BackgroundBiyeom-Tang, a medicine prescribed by oriental clinics, has been used for the treatment of the allergic rhinitis (AR). In the present study, an ethanol extract of Biyeom-Tang (EBT) was investigated for anti-allergic properties on bone-marrow derived mast cells (BMMC) and in vivo models.MethodsThe anti-allergic properties of EBT were evaluated by measuring β-Hex release and the production of prostaglandin D2 (PGD2) and leukotriene C4 (LTC4) on BMMC in vitro and PCA and OVA-induced AR models in vivo.ResultsEBT strongly inhibited a degranulation reaction in a dose dependent manner with an IC50 value of 35.6 μg/ml. In addition, the generation of PGD2 and LTC4 was inhibited in BMMC in a concentration-dependent manner with IC50 values of 7.0 μg/ml and 10.9 μg/ml, respectively. When administrated orally, EBT ameliorated the mast cell-mediated PCA reaction. In the OVA-induced AR model, the increased levels of IgE were reduced by EBT. The levels of cytokines, such as IL-4, IL-5, IL-10, and IL-13 decreased in the splenocytes of EBT-treated mice. The histological analysis shows that the infiltration of inflammatory cells increased by OVA-sensitization was also reduced.ConclusionsTaken together, these results suggested that EBT has anti-allergic and anti-inflammatory effects in vitro and in vivo models.
We previously demonstrated the alleviation of ovalbumin (OVA)-induced airway inflammation by Inulae flos. In the present study, the effects of britanin, a sesquiterpene compound isolated from Inulae flos, were evaluated in an in vivo animal model for anti-asthma activity through observation of airway hyperresponsiveness (AHR), eosinophil recruitment, Th2 cytokine and IgE levels, and lung histopathology. Britanin administration effectively reduced AHR induced by aerosolized methacholine, airway eosinophilia, Th2 cytokines in bronchoalveolar lavage fluids and the supernatant of cultured splenocytes compared with OVA-induced mice. Histological studies showed that increased inflammatory cell infiltration and mucus secretion were reduced by britanin administration. Thus, britanin may have therapeutic potential for treating allergic asthma.
Mast cells are central players in immediate-type hypersensitvity and inflammatory responses. In the present study, the effects of britanin on the passive cutaneous anaphylaxis (PCA) reaction in mice and on the phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-induced production of pro-inflammatory cytokines in human mast cell line (HMC-1) were evaluated. The oral administration of britanin (10-20 mg/kg) decreased the mast cell-mediated PCA reaction in IgE-sensitized mice. In the activity and mechanism of britanin in vitro assay, britanin suppressed the gene expression and secretion of pro-inflammatory cytokines in a dose-dependent manner in HMC-1. In addition, britanin attenuated PMACI-induced activation of NF-κB as indicated by the inhibition of the degradation of IκBα, nuclear translocation of NF-κB, NF-κB/DNA binding activity assay, and blocked the phosphorylation of p38 MAP kinase, in a dose-dependent manner. We conclude that britanin may have potential as a treatment for allergic-inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.