Mutations in COCH cause autosomal dominant non-syndromic hearing loss with variable degrees of clinical onset and vestibular malfunction. We selected eight uncharacterized mutations and performed immunocytochemical and Western blot analyses to track cochlin through the secretory pathway. We then performed a comprehensive analysis of clinical information from DFNA9 patients with all 21 known COCH mutations in conjunction with cellular and molecular findings to identify genotype-phenotype correlations. Our studies revealed that five mutants were not secreted into the media: two vWFA domain mutants, which were not transported from the ER to Golgi complex and formed high-molecular-weight aggregates in cell lysates; and three LCCL domain mutants, which were detected as intracellular dimeric cochlins. Mutant cochlins that were not secreted and accumulated in cells result in earlier age of onset of hearing defects. In addition, individuals with LCCL domain mutations show accompanying vestibular dysfunction, whereas those with vWFA domain mutations exhibit predominantly hearing loss. This is the first report showing failure of mutant cochlin transport through the secretory pathway, abolishment of cochlin secretion, and formation and retention of dimers and large multimeric intracellular aggregates, and high correlation with earlier onset and progression of hearing loss in individuals with these DFNA9-causing mutations.
Age-related hearing loss (presbycusis) refers to bilaterally symmetrical hearing loss resulting from aging process. Presbycusis is a complex phenomenon characterized by audiometric threshold shift, deterioration in speech-understanding and speech-perception difficulties in noisy environments. Factors contributing to presbycusis include mitochondria DNA mutation, genetic disorders including Ahl, hypertension, diabetes, metabolic disease and other systemic diseases in the intrinsic aspects. Extrinsic factors include noise, ototoxic medication and diet. However, presbycusis may not be related to the intrinsic and extrinsic factors separately. Presbycusis affects not only the physical, cognitive and emotional activities of patients, but also their social functioning. As a result, patients' quality of life deteriorates, compounded by various symptoms including depression, social isolation and lower self-esteem. Presbycusis is classified into six categories, as based on results of audiometric tests and temporal bone pathology, established by Schuknecht (1993): sensory, neural, metabolic or strial, cochlear conductive, mixed and indeterminate types. Among these, metabolic presbycusis is the mainstay of presbycusis types. Age-related changes also develop in the central hearing system. Functional decline of the central auditory system, caused by aging, reduces speech-understanding in noisy background and increase temporal processing deficits in gap-detection measures. This study reviews the literature on the age-related hearing loss.
BackgroundHereditary hearing loss is one of the most common heterogeneous disorders, and genetic variants that can cause hearing loss have been identified in over sixty genes. Most of these hearing loss genes have been detected using classical genetic methods, typically starting with linkage analysis in large families with hereditary hearing loss. However, these classical strategies are not well suited for mutation analysis in smaller families who have insufficient genetic information.MethodsEighty known hearing loss genes were selected and simultaneously sequenced by targeted next-generation sequencing (NGS) in 8 Korean families with autosomal dominant non-syndromic sensorineural hearing loss.ResultsFive mutations in known hearing loss genes, including 1 nonsense and 4 missense mutations, were identified in 5 different genes (ACTG1, MYO1F, DIAPH1, POU4F3 and EYA4), and the genotypes for these mutations were consistent with the autosomal dominant inheritance pattern of hearing loss in each family. No mutational hot-spots were revealed in these Korean families.ConclusionTargeted NGS allowed for the detection of pathogenic mutations in affected individuals who were not candidates for classical genetic studies. This report is the first documenting the effective use of an NGS technique to detect pathogenic mutations that underlie hearing loss in an East Asian population. Using this NGS technique to establish a database of common mutations in Korean patients with hearing loss and further data accumulation will contribute to the early diagnosis and fundamental therapies for hereditary hearing loss.
Our results provide insight into the role of MsrB3 in hearing function and bring us one step closer to hearing restoration as a fundamental therapy.
Methionine sulfoxide reductase B3 (MsrB3) is a protein repair enzyme that specifically reduces methionine-R-sulfoxide to methionine. A recent genetic study showed that the MSRB3 gene is associated with autosomal recessive hearing loss in human deafness DFNB74. However, the precise role of MSRB3 in the auditory system and the pathogenesis of hearing loss have not yet been determined. This work is the first to generate MsrB3 knockout mice to elucidate the possible pathological mechanisms of hearing loss observed in DFNB74 patients. We found that homozygous MsrB3(-/-) mice were profoundly deaf and had largely unaffected vestibular function, whereas heterozygous MsrB3(+/-) mice exhibited normal hearing similar to that of wild-type mice. The MsrB3 protein is expressed in the sensory epithelia of the cochlear and vestibular tissues, beginning at E15.5 and E13.5, respectively. Interestingly, MsrB3 is densely localized at the base of stereocilia on the apical surface of auditory hair cells. MsrB3 deficiency led to progressive degeneration of stereociliary bundles starting at P8, followed by a loss of hair cells, resulting in profound deafness in MsrB3(-/-) mice. The hair cell loss appeared to be mediated by apoptotic cell death, which was measured using TUNEL and caspase 3 immunocytochemistry. Taken together, our data suggest that MsrB3 plays an essential role in maintaining the integrity of hair cells, possibly explaining the pathogenesis of DFNB74 deafness in humans caused by MSRB3 deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.