The production of zinc oxide nanoparticles (ZnO NPs) utilizing different vegetable extracts (onion, cabbage, carrot, and tomato) was performed in this research owing to its excellency over other methods of synthesis, namely, simplicity, environmental friendliness, and the elimination of harmful compounds. Fresh extracted onion, cabbage, carrot, and tomato of ZnO NPs are characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy. FTIR findings demonstrate that the prepared nanoparticles were observed in the spectrum of 626 cm-1–1219 cm-1 with some other functional groups. Wurtzite hexagonal structure of the prepared ZnO NPs was observed from XRD results. In addition, the prepared nanoparticles were failed into nanoscales (17 nm, 18 nm, 24 nm, and 15 nm) calculated from Scherrer’s equation. Nearly spherical shapes were seen from SEM image for onion and tomato extraction while rod and tube for carrot and cabbage, respectively. Two broad peaks were observed from UV-vis spectroscopy results for each extract. The presence of a wide range of energy bandgaps in the region of 3-4 eV was detected, indicating that ZnO NP material can be employed in metal oxide semiconductor-based systems. The dye-sensitive solar cell based on ZnO NPs has been successfully synthesized, and the efficiency of the device has been evaluated by measuring the current density-voltage behaviour under the presence of artificial sunshine. The increased effectiveness of the manufactured dye-sensitive solar cell is attributable to a large improvement in dye molecular adsorption onto the surface of ZnO NPs. Thus, the usage of the green produced ZnO NPs with creating dye sensitivity solar cell is a simple and viable way for the well-being of our future.
Aloe vera gel is used traditionally for the treatment of skin diseases, including psoriasis. An ethanolic extract of the gel was assessed for antipsoriatic activity using a mouse tail model of psoriasis. The extract produced a significant differentiation in the epidermis, as seen from its degree of orthokeratosis (85.07 ± 3.36%) when compared with the negative control (17.30 ± 4.09%). This was equivalent to the effect of the standard positive control, tazarotene (0.1%) gel, which showed a 90.03 ± 2.00% degree of orthokeratosis. The ethanolic extract of Aloe vera leaf gel also produced a significant increase in relative epidermal thickness when compared with the control group, whereas the standard tazarotene showed no change. Taken together, the extract showed an overall antipsoriatic activity of 81.95%, compared with 87.94 for tazarotene, in the mouse tail model for psoriasis.
Ultraviolet radiation causes damages to the human body, such as skin ageing, skin cancer, and allergies throughout the world. Applying zinc oxide nanoparticles (ZnO NPs) in sunscreen products (like cloths or textiles) to protect human skin by absorbing the ultraviolet radiations that emerged from the sun. The main aim of this study is to investigate both absorbance and transmittance characteristics of the untreated and treated cotton textiles. For ZnO NPs using hydrothermal methods, they were made from Zn(NO3)2·6H2O and NaOH at a constant annealing temperature of 300°C. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis spectroscopy were used to analyze the produced ZnO NPs. From the FT-IR result, ZnO NPs were observed in the region of 400-600 cm-1. Wurtzite hexagonal structure of ZnO NPs with the average crystal size
32
±
49
nm was observed from XRD results. Flowers in the shape of synthesized ZnO NPs were observed from SEM images. The UV-vis penetration peaks were identified at 264 nm and 376 nm, with energy band gaps of 4.68 and 3.536 eV, respectively. When compared to bulk ZnO, the energy band gap of ZnO NPs was blue-shifted due to the impact of quantum confinement. The peaks in UV-vis absorption were caused by an electronic transition from the valiancy to the conduction bands. The high energy band shows high absorbance of the synthesis sample in the case of 264 nm. The ZnO NPs were manufactured and applied to 100% of raw cotton to impart sunscreen action to both untreated and treated cotton fabrics. The performance of treatment has been evaluated utilizing UV-vis spectroscopy through quantifying ultraviolet protective factors (UPF) and percentage of transmitted (%T) radiations. The treated cotton textiles have 61.50% UPF while 2.65% ultraviolet radiations were transmitted. In other words, untreated cotton textiles have 1.63% UPF while 74.56% ultraviolet radiation was transmitted. Therefore, the treated cotton textiles have excellent protection categories when compared to untreated cotton textiles.
A green deposition method of zinc oxide nanoparticles using coffee leaf extraction was successfully prepared. The use of these preparation techniques is accepted by many researchers because it is nonexpensive and simple and has no environmental impact during the operation. The determination and reduction of Zn ions to ZnO NPs were characterized by using a UV-visible spectroscope. The UV-visible spectroscopy result reveals that the large band gap energy is observed in the visible region at the wavelength of 300 nm. X-ray diffraction and SEM analysis confirm that the deposited nanoparticle is highly crystalline with (111), (222), and (100) planes and cubic shape structure. The coffee leaf extraction serves as a reducing agent for stability of the particle length, where its medicinal value outcome showed an important antibacteria of the pathogenic type which appeared on the wound. The present research deals with the green synthesis of ZnO NPs as well as its application in toxicity reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.