The conventional treatment for toxoplasmosis with pyrimethamine and sulfadiazine shows toxic effects to the host, and it is therefore necessary to search for new drugs. Some studies suggest the use of statins, which inhibit cholesterol synthesis in humans and also the initial processes of isoprenoid biosynthesis in the parasite. Thus, the objective of this study was to evaluate the activity of the statins pravastatin and simvastatin in HeLa cells infected in vitro with the RH strain of T. gondii. HeLa cells (1×10) were infected with T. gondii tachyzoites (5×10) following two different treatment protocols. In the first protocol, T. gondii tachyzoites were pretreated with pravastatin (50 and 100μg/mL) and simvastatin (1.56 and 3.125μg/mL) for 30min prior to infection. In the second, HeLa cells were first infected (5×10) with tachyzoites and subsequently treated with pravastatin and simvastatin for 24h at the concentrations noted above. Initially, we evaluated the cytotoxicity of drugs by the MTT assay, number of tachyzoites adhered to cells, number of infected cells, and viability of tachyzoites by trypan blue exclusion. The supernatant of the cell cultures was collected post-treatment for determination of the pattern of Th1/Th2/Th17 cytokines by cytometric bead array. There was no cytotoxicity to HeLa cells with 50 and 100μg/mL pravastatin and 1.56 and 3.125μg/mL simvastatin. There was no change in the viability of tachyzoites that received pretreatment. Regarding the pre- and post-treatment of the cells with pravastatin and simvastatin alone, there was a reduction in adhesion, invasion and proliferation of cells to T. gondii. As for the production of cytokines, we found that IL-6 and IL-17 were significantly reduced in cells infected with T. gondii and treated with pravastatin and simvastatin, when compared to control. Based on these results, we can infer that pravastatin and simvastatin alone possess antiproliferative effects on tachyzoites forms of T. gondii, giving these drugs new therapeutic uses.
Human strongyloidiasis is caused by helminth Strongyloides stercoralis. It has a worldwide distribution, often neglected and cause of severe morbidity. The parasitological diagnosis is hindered by the low and irregular amount of larvae in feces. The goal of the present study was to detect IgG and IgG immune complex using conventional serum samples and saliva as alternative samples. We collected samples from 60 individuals, namely: group I composed of 30 healthy individuals; and group II composed of 30 individuals eliminating S. stercoralis larvae in feces. We calculated the area under the curve, general index of diagnostic accuracy, Kappa index and determined the correlations between different diagnostic tests. The detection of IgG levels was performed by an immunoenzymatic assay with alkaline extract of S. venezuelensis larvae as antigen. Positivity of anti-S. stercoralis IgG in serum samples from group I was 3·3%, and from group II 93·3%. The detection of immune complex indicated that group I exhibited 3·3% and group II 56·7%. In the saliva samples, IgG detection was 26·7% for group I and 43·3% for group II. Immune complex was detected in 20% of group I, and 30% of group II. IgG immune complex in conventional serum samples and saliva as alternative samples can be considered biomarkers for the diagnosis of active strongyloidiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.