The conventional treatment for toxoplasmosis with pyrimethamine and sulfadiazine shows toxic effects to the host, and it is therefore necessary to search for new drugs. Some studies suggest the use of statins, which inhibit cholesterol synthesis in humans and also the initial processes of isoprenoid biosynthesis in the parasite. Thus, the objective of this study was to evaluate the activity of the statins pravastatin and simvastatin in HeLa cells infected in vitro with the RH strain of T. gondii. HeLa cells (1×10) were infected with T. gondii tachyzoites (5×10) following two different treatment protocols. In the first protocol, T. gondii tachyzoites were pretreated with pravastatin (50 and 100μg/mL) and simvastatin (1.56 and 3.125μg/mL) for 30min prior to infection. In the second, HeLa cells were first infected (5×10) with tachyzoites and subsequently treated with pravastatin and simvastatin for 24h at the concentrations noted above. Initially, we evaluated the cytotoxicity of drugs by the MTT assay, number of tachyzoites adhered to cells, number of infected cells, and viability of tachyzoites by trypan blue exclusion. The supernatant of the cell cultures was collected post-treatment for determination of the pattern of Th1/Th2/Th17 cytokines by cytometric bead array. There was no cytotoxicity to HeLa cells with 50 and 100μg/mL pravastatin and 1.56 and 3.125μg/mL simvastatin. There was no change in the viability of tachyzoites that received pretreatment. Regarding the pre- and post-treatment of the cells with pravastatin and simvastatin alone, there was a reduction in adhesion, invasion and proliferation of cells to T. gondii. As for the production of cytokines, we found that IL-6 and IL-17 were significantly reduced in cells infected with T. gondii and treated with pravastatin and simvastatin, when compared to control. Based on these results, we can infer that pravastatin and simvastatin alone possess antiproliferative effects on tachyzoites forms of T. gondii, giving these drugs new therapeutic uses.
Coronavirus Disease 2019 (COVID-19) has been classified as a global threat, affecting millions of people and killing thousands. It is caused by the SARS-CoV-2 virus, which emerged at the end of 2019 in Wuhan, China, quickly spreading worldwide. COVID-19 is a disease with symptoms that range from fever and breathing difficulty to acute respiratory distress and death, critically affecting older patients and people with previous comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor and mainly spreads through the respiratory tract, which it then uses to reach several organs. The immune system of infected patients has been demonstrated to suffer important alterations, such as lymphopenia, exhausted lymphocytes, excessive amounts of inflammatory monocytes and macrophages, especially in the lungs, and cytokine storms, which may contribute to its severity and difficulty of establishing an effective treatment. Even though no specific treatment is currently available, several studies have been investigating potential therapeutic strategies, including the use of previously approved drugs and immunotherapy. In this context, this review addresses the interaction between SARS-CoV-2 and the patient's host immune system during infection, in addition to discussing the main immunopathological mechanisms involved in the development of the disease and potential new therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.