We present a comprehensive study on how to design and fabricate low loss electro-optic phase shifters based on an electro-optic polymer and the silicon nitride and silicon oxynitride waveguide material systems. The loss mechanisms of phase shifters with an electro-optic (EO) polymer cladding are analyzed in detail and design solutions to achieve lowest losses are presented. In order to verify the low loss design a proof of concept prototype phase shifter was fabricated, which exhibits an attenuation of 0.8 dB/cm at 1550 nm and an electro-optic efficiency factor of 27%. Furthermore, the potential of this class of phase shifters is evaluated in numerical simulations, from which the optimal design parameters and achievable figures of merit were derived. The presented phase shifter design has its potential for application in fast adaptive multi stage devices for optical signal processing.
We compare optical time domain reflectometry (OTDR) techniques based on conventional single impulse, coding and linear frequency chirps concerning their signal to noise ratio (SNR) enhancements by measurements in a passive optical network (PON) with a maximum one-way attenuation of 36.6 dB. A total of six subscribers, each represented by a unique mirror pair with narrow reflection bandwidths, are installed within a distance of 14 m. The spatial resolution of the OTDR set-up is 3.0 m.
Silicon oxycarbide deposited by plasma enhanced chemical vapor deposition is investigated regarding its application as a material for optical waveguides. The dependence of the infrared absorption, the refractive index, and the surface roughness on the precursor gas flow ratios is studied by Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, respectively. Results show that the refractive index can be tuned over a significant wider range compared to silicon oxynitride. Fabricated waveguides with a refractive index contrast of 0.05 show waveguide attenuation from about 0.3 dB/cm to 0.4 dB/cm for wavelengths between 1480 nm and 1570 nm. These low values were achieved without using a high temperature annealing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.