In this research, hydrogel biocomposites were prepared from whey protein isolate (WPI), reduced graphene oxide (rGO), and synthetic polymers in varied ratios. Their physicochemical properties were evaluated by FTIR, SEM, TGA, AFM, and TEM. FTIR spectra revealed significant peaks at 1167 cm −1 for C-O-C peak and at 1449 cm −1 for O-H bending for WPI and rGO, respectively. The hydrogels were loaded with proguanil hydrochloride and chloroquine diphosphate and in vitro release kinetics of individual drugs from the biocomposites were studied. The SEM images of the biocomposites after drug release confirmed that they are biodegradable. The drug release was controlled, pH-dependent which further confirmed that the hydrogels are pH-sensitive. The release of proguanil from the hydrogels was slow when compared to chloroquine, suggesting that the solubility of the drug influenced their rate of release. The drug release from the biocomposites fitted the Korsmeyer-Peppas model with n values for chloroquine between 0.46 and 0.49 at pH of 1.2 and between 0.72 and 1.41 at pH of 7.4. The n values for proguanil were between 0.66 and 0.83 at pH 1.2 and 0.85-0.92 at pH 7.4. The results obtained suggested that the biocomposites are potential systems that can be tailored for controlled delivery of bioactive agents.
Over the decades, corrosion has resulted in loss of lives accorded with damage costs in almost all engineering fields. Thus, it is seen as an environmental threat with catastrophic attributes, which calls for day-to-day research on its final resolution. Recent studies have proven organic green corrosion inhibitors (OGCIs) from plant extracts with biodegradable, environmentally accommodative, relatively cheap, and nonharmful features as the most perfect approach of tackling the problem. This review gives succinct discussion on the mechanisms, classifications, and active functional groups of OGCIs. Measuring ways and factors influencing their efficiency are presented. Also, various plant extracts used as OGCIs in preventing material corrosion in corrosive media coupled with their respective findings, applied characterization techniques, and future challenges are presented. The significance of values obtained from simulating presented mathematical models governing OGCI kinetics, adsorption isotherm, and adsorption thermodynamics is also included. In conclusion, recommendations that will broaden the usage of OGCIs from plant extracts for inhibiting corrosion of materials are presented for prospective researchers in the field of corrosion.
This study investigated groundwater quality collected from two industrial and residential locations in each of Lagos metropolis. Prescribed standard procedures of American Public Health Association were used to measure physico-chemical parameters of each of the groundwater samples which include pH, EC, DO, TDS, BOD, COD, anions (Cl − , NO 3 − , SO 4 2− , PO 4 3− ) and heavy metals (Cu, Zn, Pb, Mn, Fe, Co, Cd and Cr). From laboratory analysis, measured physico-chemical parameters were within the permissible ranges specified by the WHO and NSDWQ except pH, TDS, EC, Pb, Mn and Fe for groundwater samples from industrial locations and pH, Pb, Mn and Fe for residential locations. Higher concentrations of TDS and EC reported for groundwater samples from industrial locations were attributed to heavy discharge of effluents from industrial treatment plants as well as dissolution of ionic heavy metals from industrial activities of heavy machines. Statistical Pearson's correlation revealed physico-chemical parameters of water quality to be moderately and strongly correlated with one another at either p < 0.05 or < 0.01.
This paper gives detailed comprehensive review of atmospheric assessment of particulate matter and heavy metals. Previous research works executed on this subject matter in the past four decades were adequately scrutinized. Various equipments for assessing atmospheric particulate matter and heavy metals were presented. Mathematical modeling equations for source apportionment and characterization, deposition rate prediction and health risk characterization of PM 10 were also presented. However, the following conclusions were made: (1) there is need for improvement on the mathematical models by reducing the number of assumptions made in developing them. (2) Comparative analysis of concentrations of heavy metals in the atmosphere under the same environment for different methodologies should be executed for accuracy purposes. (3) Cost implication of assessing, monitoring and controlling these unfriendly substances should be examined, and hence, involvement of cost engineers may be of immense help. (4) Further research works should be done on Air-Q 2.2.3 model currently identified as a new methodology for provision of quantitative data on the impact of particulate matter exposure on the health of people. (5) Compliance monitoring networks should be designed to ease data collection for the observables, locations and time periods that allowed receptor models to be applied. (6) There is need for much more research works that enable optimal control and regulation of emission of heavy metals into the atmosphere in order to reduce health effects of these inhalable substances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.