Given still-high levels of coronavirus disease 2019 (COVID-19) susceptibility and inconsistent transmission-containing strategies, outbreaks have continued to emerge across the United States. Until effective vaccines are widely deployed, curbing COVID-19 will require carefully timed nonpharmaceutical interventions (NPIs). A COVID-19 early warning system is vital for this. Here, we evaluate digital data streams as early indicators of state-level COVID-19 activity from 1 March to 30 September 2020. We observe that increases in digital data stream activity anticipate increases in confirmed cases and deaths by 2 to 3 weeks. Confirmed cases and deaths also decrease 2 to 4 weeks after NPI implementation, as measured by anonymized, phone-derived human mobility data. We propose a means of harmonizing these data streams to identify future COVID-19 outbreaks. Our results suggest that combining disparate health and behavioral data may help identify disease activity changes weeks before observation using traditional epidemiological monitoring.
Background Novel influenza surveillance systems that leverage Internet-based real-time data sources including Internet search frequencies, social-network information, and crowd-sourced flu surveillance tools have shown improved accuracy over the past few years in data-rich countries like the United States. These systems not only track flu activity accurately, but they also report flu estimates a week or more ahead of the publication of reports produced by healthcare-based systems, such as those implemented and managed by the Centers for Disease Control and Prevention. Previous work has shown that the predictive capabilities of novel flu surveillance systems, like Google Flu Trends (GFT), in developing countries in Latin America have not yet delivered acceptable flu estimates. Objective The aim of this study was to show that recent methodological improvements on the use of Internet search engine information to track diseases can lead to improved retrospective flu estimates in multiple countries in Latin America. Methods A machine learning-based methodology that uses flu-related Internet search activity and historical information to monitor flu activity, named ARGO (AutoRegression with Google search), was extended to generate flu predictions for 8 Latin American countries (Argentina, Bolivia, Brazil, Chile, Mexico, Paraguay, Peru, and Uruguay) for the time period: January 2012 to December of 2016. These retrospective (out-of-sample) Influenza activity predictions were compared with historically observed flu suspected cases in each country, as reported by Flunet, an influenza surveillance database maintained by the World Health Organization. For a baseline comparison, retrospective (out-of-sample) flu estimates were produced for the same time period using autoregressive models that only leverage historical flu activity information. Results Our results show that ARGO-like models’ predictive power outperform autoregressive models in 6 out of 8 countries in the 2012-2016 time period. Moreover, ARGO significantly improves on historical flu estimates produced by the now discontinued GFT for the time period of 2012-2015, where GFT information is publicly available. Conclusions We demonstrate here that a self-correcting machine learning method, leveraging Internet-based disease-related search activity and historical flu trends, has the potential to produce reliable and timely flu estimates in multiple Latin American countries. This methodology may prove helpful to local public health officials who design and implement interventions aimed at mitigating the effects of influenza outbreaks. Our methodology generally outperforms both the now-discontinued tool GFT, and autoregressive methodologies that exploit only historical flu activity to produce future disease estimates.
Background Wet markets are markets selling fresh meat and produce. Wet markets are critical for food security and sustainable development in their respective regions. Due to their cultural significance, they attract numerous visitors and consequently generate tourist-geared information on the Web (ie, on social networks such as TripAdvisor ). These data can be used to create a novel, international wet market inventory to support epidemiological surveillance and control in such settings, which are often associated with negative health outcomes. Objective Using social network data, we aimed to assess the level of wet markets’ touristic importance on the Web, produce the first distribution map of wet markets of touristic interest, and identify common diseases facing visitors in these settings. Methods A Google search was performed on 31 food market–related keywords, with the first 150 results for each keyword evaluated based on their relevance to tourism. Of all these queries, wet market had the highest number of tourism-related Google Search results; among these, TripAdvisor was the most frequently-occurring travel information aggregator, prompting its selection as the data source for this study. A Web scraping tool ( ParseHub ) was used to extract wet market names, locations, and reviews from TripAdvisor . The latter were searched for disease-related content, which enabled assignment of GeoSentinel diagnosis codes to each. This syndromic categorization was overlaid onto a mapping of wet market locations. Regional prevalence of the most commonly occurring symptom group - food poisoning - was then determined (ie, by dividing the number of wet markets per continent with more than or equal to 1 review containing this syndrome by the total number of wet markets on that continent with syndromic information). Results Of the 1090 hits on TripAdvisor for wet market , 36.06% (393/1090) conformed to the query’s definition; wet markets were heterogeneously distributed: Asia concentrated 62.6% (246/393) of them, Europe 19.3% (76/393), North America 7.9% (31/393), Oceania 5.1% (20/393), Africa 3.1% (12/393), and South America 2.0% (8/393). Syndromic information was available for 14.5% (57/393) of wet markets. The most frequently occurring syndrome among visitors to these wet markets was food poisoning, accounting for 54% (51/95) of diagnoses. Cases of this syndrome were identified in 56% (22/39) of wet markets with syndromic information in Asia, 71% (5/7) in Europe, and 71% (5/7) in North America. All wet markets in South America and Oceania reported food poisoning cases, but the number of reviews with syndromic information was very limited in these regions (n...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.