We conducted a bee survey in neonicotinoid-treated commercial potato fields using bowl and vane traps in the 2016 growing season. Traps were placed outside the fields, at the field edges, and 10 and 30 m into the fields. We collected 756 bees representing 58 species, with Lasioglossum spp. comprising 73% of all captured bees. We found seven Bombus spp., of which B. impatiens was the only known visitor of potato flowers in our region. The majority of the bees (68%) were collected at the field edges and in the field margins. Blue vane traps caught almost four-times as many bees and collected 30% more species compared to bowl traps. Bee communities did not differ across trap locations but they were different among trap types. We tested B. impatiens visitation to neonicotinoid treated and untreated potato flowers in field enclosures. The amount of time bees spent at flowers and the duration of visits were not significantly different between the two treatments. Our results demonstrate that a diverse assemblage of bees is associated with an agroecosystem dominated by potatoes despite the apparent lack of pollinator resources provided by the crop. We found no difference in B. impatiens foraging behavior on neonicotinoid-treated compared to untreated plants.
We evaluated pest and predator spatial distributions in relation to asparagus field margins, developed molecular gut content analysis methods for two key asparagus pests, and determined trophic links between the two pests and arthropod predators. Our results indicated that the abundance of natural enemies is higher outside asparagus fields than inside, and fields bordered by forests had higher numbers of predators compared to other types of field margins. We screened 3,646 field-collected predators from 10 commercial asparagus fields using molecular gut content analysis in 2014 and 2015, and found that 29 arthropod families feed on the two key pests. Significantly more predators positive for the two key pests' DNA were found in field margins in both years than inside the asparagus field. We highlight the potential significance of unmanaged field margins, particularly forested ones, in providing biocontrol services in agricultural fields.
The 16SrIV-D phytoplasma was first identified in Florida in 2006. Since its discovery, it has spread throughout most of the state. It is most prevalent in the central part of Florida, from Hillsborough County on the west coast to St. Lucie County on the east coast. The 16SrIV-D phytoplasma is the causal agent of lethal bronzing disease (LBD), which is also known as Texas Phoenix palm decline (TPPD). It affects a variety of common and economically important ornamental palm species as well as the native and ecologically important species, Sabal palmetto. It has spread into the southern portions of Florida, where the palm species diversity is higher. The aims of this survey were to document the spread of disease in terms of geographic and host range one decade after its introduction into Florida, and to assess the risk that LBD poses to the nursery and landscaping industries. The survey included samples received from stakeholders throughout the state, covering 18 counties, as well as a systematic sampling of palms at the Fort Lauderdale Research and Education Center (FLREC), where the disease is spreading actively. The findings of this survey resulted in the detection of LBD in eight new counties, including Collier, Hernando, Jefferson, Martin, Miami-Dade, Monroe, Seminole, and St. Johns, and the expansion of LBD into four new host species, Cocos nucifera, Livistona chinensis, Butia capitata, and Carpentaria acuminata. These findings are crucial for stakeholders because they highlight new hosts of 16SrIV-D phytoplasma and the geographic expansion of the disease, indicating that vigilance is needed when surveying declining palms.
Lethal bronzing disease (LBD) is a lethal decline of various palm species caused by the 16SrIV-D phytoplasma. The disease was described in Texas in 2002 but found in Florida in 2006. Since its introduction, the phytoplasma has spread throughout much of the state. Typically, sampling of infected palms involves taking trunk tissue; however, in some instances this is not possible so alternative protocols are needed. In this study, phytoplasma titers were measured in different leaf tissues of infected palm in order to provide stakeholders with more sampling options. In addition, understanding the phytoplasma distribution in the palm canopy can shed light on the pathogen’s biology and aid in vector studies. Three species of palm, Phoenix roebelinii, Sabal palmetto, and Syagrus romanzoffiana, were identified and confirmed positive for infection by qPCR analysis. Leaf tissue from these species that represented different stages of decay were sampled and tested by qPCR and dPCR. For each species, phytoplasma was only detectable in the spear leaf tissue that was connected directly to the apical meristem by both qPCR and dPCR. These data are useful by demonstrating that the 16SrIV-D phytoplasma appears to be restricted to the spear leaf so stakeholders who wish to sample palms but cannot sample trunk tissue due to palm size or lack of permission to drill into the trunk have an alternative tissue type to reliably sample. In addition, this information will help improve vector research by knowing where to collect insects that have a higher probably of possessing the phytoplasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.