ObjectiveTo provide a precise quantification of the association between alcohol and tobacco consumption trends in head and neck cancer patients over the past 45 years.MethodsWe combined findings from all studies published until March 2014 and evaluated the association between different levels in alcohol and tobacco consumption and head and neck cancers through a meta-analytic approach.ResultsWe included 28 studies involving 13830 patients with head and neck cancer. In patients with alcohol consumption, the pooled odds ratio (OR) and 95% confidence interval (CI) were 1.29(1.06-1.57), 2.67(2.05-3.48) and 6.63(5.02-8.74) for light drinkers, moderate drinkers and heavy drinkers, respectively. In patients with tobacco consumption, the pooled OR and 95% CI were 2.33(1.84-2.95), 4.97(3.67-6.71) and 6.77(4.81-9.53) for light smokers, moderate smokers and heavy smokers, respectively.ConclusionThe increased alcohol and tobacco consumption trends increased the risk of head and neck cancer over the past 45 years. Tobacco consumption was found to be a stronger risk factor for head and neck cancer than alcohol consumption. Thus, the control should be considered to limit the intake of alcohol and tobacco.
To evaluate whether the genetic variants in H19 influence the risk of oral squamous cell carcinoma (OSCC) in a Chinese population, a case-control study was conducted to analyze four functional single nucleotide polymorphisms (SNPs) in H19. The cohort comprised of 444 OSCC cases and 984 healthy controls, and the study further evaluated the biological effect by bioinformatics prediction and functional experiments. Two SNPs, rs217727 and rs2839701, were found to be associated with the risk of OSCC [rs217727: odds ratio (OR) = 1.32, 95% confidence interval (CI) = 1.11–1.58, P = 0.002; rs2839701: OR = 1.23, 95% CI = 1.04–1.46, P = 0.019].Bioinformatics predicted that rs2839701 C>G might alter the secondary structure of H19. In addition, rs2839701 C>G inhibited the transcription activity and was correlated with the decreased expression of downstream gene MRPL23-AS1 that was downregulated in OSCC. The current results suggested that the SNPs in H19 may play a major role in genetic susceptibility to OSCC.
BackgroundMicroRNA (miRNA) polymorphisms may alter miRNA-related processes, and they likely contribute to cancer susceptibility. Various studies have investigated the associations between genetic variants in several key miRNAs and the risk of human cancers; however, few studies have focused on head and neck squamous cell carcinoma (HNSCC) risk. This study aimed to evaluate the associations between several key miRNA polymorphisms and HNSCC risk in a Chinese population.MethodsIn this study, we genotyped five common single-nucleotide polymorphisms (SNPs) in several key miRNAs (miR-149 rs2292832, miR-146a rs2910164, miR-605 rs2043556, miR-608 rs4919510, and miR-196a2 rs11614913) and evaluated the associations between these SNPs and HNSCC risk according to cancer site with a case–control study including 576 cases and 1552 controls, which were matched by age and sex in a Chinese population.ResultsThe results revealed that miR-605 rs2043556 [dominant model: adjusted odds ratio (OR) 0.71, 95% confidence interval (CI) 0.58–0.88; additive model: adjusted OR 0.74, 95% CI 0.62–0.89] and miR-196a2 rs11614913 (dominant model: adjusted OR 1.36, 95% CI 1.08–1.72; additive model: adjusted OR 1.28, 95% CI 1.10–1.48) were significantly associated with the risk of oral squamous cell carcinoma (OSCC). Furthermore, when these two loci were evaluated together based on the number of putative risk alleles (rs2043556 A and rs11614913 G), a significant locus-dosage effect was noted on the risk of OSCC (Ptrend < 0.001). However, no significant association was detected between the other three SNPs (miR-149 rs2292832, miR-146a rs2910164, and miR-608 rs4919510) and HNSCC risk.ConclusionOur study provided the evidence that miR-605 rs2043556 and miR-196a2 rs11614913 may have an impact on genetic susceptibility to OSCC in Chinese population.
Let-7 and Lin28 establish a double-negative feedback loop to affect several biological processes, such as differentiation of stem cell, invasion and metastasis, and tumorigenesis. In this study, we systematically investigated the associations between 6 potentially functional SNPs of let7 and Lin28 genes and the risk of oral cavity cancer with a case-control study including 384 oral cavity cancer cases and 731 controls. We found that the variant allele (T) of rs221636 of Lin28B was significantly associated with a reduced risk of oral cavity cancer [odds ratio (OR) = 0.73, 95% confidence interval (CI) = 0.58–0.92, P = 7.55 × 10−3 in additive model]. Bioinformatics prediction indicated that rs221636 was located at the binding site of hsa-miR-548p in the 3′ UTR of Lin28B. Luciferase activity assay also showed a lower expression level for rs221636 T allele compared with A allele. These findings indicated that rs221236 located at Lin28B may contribute to the risk of oral cavity cancer through the interruption of miRNA binding.
Telomere dysfunction participates in malignant transformation and tumorigenesis. Previous studies have explored the associations between telomere length (TL) and cancer susceptibility; however, the findings are inconclusive. The associations between genetic variants and TL have been verified by quite a few genome-wide association studies (GWAS). Yet, to date, there was no published study on the relationship between TL, related genetic variants and susceptibility to squamous cell carcinoma of the head and neck (SCCHN) in Chinese. Hence, we detected relative telomere length (RTL) by using quantitative PCR and genotyped seven selected single nucleotide polymorphisms by TaqMan allelic discrimination assay in 510 SCCHN cases and 913 controls in southeast Chinese. The results showed that RTL was significantly associated with SCCHN risk [(adjusted odds ratio (OR) = 1.19, 95% confidence interval (CI) = 1.08–1.32, P = 0.001]. Furthermore, among seven selected SNPs, only G allele of rs2736100 related to RTL in Caucasians was significantly associated with both the decreased RTL (P = 0.002) and the increased susceptibility to SCCHN in Chinese (additive model: adjusted OR = 1.17, 95%CI = 1.00–1.38, P = 0.049). These findings provide evidence that shortened TL is a risk factor for SCCHN, and genetic variants can contribute to both TL and the susceptibility to SCCHN in southeast Chinese population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.