The high intermediate (H*, OH*) energy barriers and slow mass/charge transfer increase the overpotential of alkaline water electrolysis at large‐current‐density. Engineering the electronic structure with the morphology of the catalyst to reduce energy barriers and improve mass/charge transportation is effective but remains challenging. Herein, a Ce‐doped CoP nanosheet is hybrid with Ni3P@NF (Ni foam) support to enhance mass/charge transfer, tune energy barriers, and improve water‐splitting kinetics through a synergistic activation. The engineered Ce0.2‐CoP/Ni3P@NF cathode exhibits an ultralow overpotential (η500, η1000) of −185, and −225 mV at −500 and −1000 mA cm−2 in 1.0 m KOH, along with an excellent pH‐universality. Impressively, an electrolyzer using the Ce0.2‐CoP/Ni3P@NF cathode can afford 500 mA cm−2 at a cell voltage of only 1.775 V and maintain stable electrolysis for 200 h in 25 wt% KOH (50 °C). Characterization and density functional theory calculation further reveal the Ce‐doping and CoP/Ni3P hybrid interaction synergistically downshift d‐band centers (εd = −2.0 eV) of Ce0.2‐CoP/Ni3P to the Fermi level, thereby activate local electronic structure for accelerating H2O dissociation and optimizing Gibbs free energy of hydrogen adsorption (∆GH*).
Discovering the multimetallic electrocatalyts with more active sites, superstability, and higher active areas toward oxygen evolution reaction (OER) is highly urgent for energy reserves. Herein, this work puts forward a novel ternary NiCoRu-layered double hydroxide (NiCoRu-LDH) synthesized via a facile one-step chloride (Cl − ) corrosion for Ni foam (NF) in the situ process as an excellent electrocatalyst toward OER. The introduction of Ru cations prominently altered the electronic properties of NiCo-LDH, exposing more surface active sites, and optimizing the intermediates of adsorption oxygen (OOH*) for water oxidation. As expected, the obtained trimetallic NiCoRu-LDH/NF electrode revealed a fairly low overpotential toward OER (270 mV at 100 mA•cm −2 ) with a Tafel slope of 40 mV•dec −1 and prolonged stability (55 h at 100 mA•cm −2 ) in alkaline solution, outperforming most of the hydroxide-based electrocatalysts currently reported. Our work demonstrates an effective approach to designing the highly efficient multimetallic electrodes toward OER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.