CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast‐carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form‐II and form‐II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s−1—sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.
Summary Despite decades of extensive study, the role of cuticular lipids in sustaining plant fitness is far from being understood. We utilized genome‐edited tree tobacco (Nicotiana glauca) to investigate the significance of different classes of epicuticular wax in abiotic stress such as cuticular water loss, drought, and light response. We generated mutants displaying a range of wax compositions. Four wax mutants and one cutin mutant were extensively investigated for alterations in their response to abiotic factors. Although the mutations led to elevated cuticular water loss, the wax mutants did not display elevated transpiration or reduced growth under nonstressed conditions. However, under drought, plants lacking alkanes were unable to reduce their transpiration, leading to leaf death, impaired recovery, and stem cracking. By contrast, plants deficient in fatty alcohols exhibited elevated drought tolerance, which was part of a larger trend of plant phenotypes not clustering by a glossy/glaucous appearance in the parameters examined in this study. We conclude that although alkanes have little effect on whole N. glauca transpiration and biomass gain under normal, nonstressed conditions, they are essential during drought responses, since they enable plants to seal their cuticle upon stomatal closure, thereby reducing leaf death and facilitating a speedy recovery.
Despite decades of research resulting in a comprehensive understanding of epicuticular wax biosynthesis and metabolism, the function of these almost ubiquitous metabolites in plant-herbivore interactions remains unresolved. To develop a better understanding of this role, we investigated plant-herbivore interactions in four Nicotiana glauca (tree tobacco) genome edited mutants. This included [eceriferum1 (cer1), eceriferum3 (cer3), beta-ketoacyl-coA synthase6 (kcs6), and fatty acyl-coA reductase (far)] displaying a wide range of alkane and fatty alcohol abundances. Three interaction classes were examined: chewing herbivory with seven caterpillar and one snail species, phloem feeding with Myzus persicae (green peach aphid), and egg laying with Bemisia tabaci (sweet potato whitefly). We found that high wax load and alkane abundance did not reduce caterpillar or snail herbivory. However, fatty alcohol content was negatively correlated with caterpillar growth, suggesting a role in reducing insect herbivory despite its lower levels. Aphid reproduction and feeding activity were not correlated with wax load and composition but are potentially affected by altered cutin composition of cer1 mutants. When examining non-feeding activities, wax crystal morphology could explain the preference of B. tabaci to lay eggs on wildtype plants relative to cer1 and far mutants. Accordingly, the fatty alcohol wax component reduces caterpillar herbivory on the chemical level, but oviposition is increased when wax crystals are dense. The results suggest that this varied response between herbivore classes and species, at times displaying increased and at times reduced fitness in response to altered wax composition is in part a consequence of co-evolution that shaped the specific effects of different N. glauca metabolites such as anabasine and fatty alcohols in plant-herbivore interactions.
Despite decades of extensive study, the role of cuticular lipids in sustaining plant fitness is far from being understood. To answer this fundamental question, we employed genome editing in tree tobacco (Nicotiana glauca) plants and generated mutations in 16 different cuticular lipids-related genes. We chose tree tobacco due to the abundant, yet simply composed epicuticular waxes deposited on its surface. Five out of 9 different mutants that displayed a cuticular lipids-related phenotype were selected for in depth analysis. They had either reduced total wax load or complete deficiency in certain wax components. This led to substantial modification in surface wax crystal structure and to elevated cuticular water loss. Remarkably, under non-stressed conditions, mutant plants with altered wax composition did not display elevated transpiration or reduced growth. However, once exposed to drought, plants lacking alkanes were not able to strongly reduce their transpiration, leading to leaf death and impaired recovery upon resuscitation, and even to stem cracking, a phenomenon typically found in trees experiencing drought stress. In contrast, plants deficient in fatty alcohols exhibited an opposite response, having reduced cuticular water loss and rapid recovery following drought. This deferential response was part of a larger trend, of no common phenotype connecting plants with a glossy appearance. We conclude that alkanes are essential under drought response and much less under normal non-stressed conditions, enabling plants to seal their cuticle upon stomatal closure, reducing leaf death and facilitating a speedy recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.