Clostridium perfringens is an important pathogen for both humans and animals, causing human foodborne disease and necrotic enteritis in poultry. In the present study, a C. perfringens-specific phage, vB_CpeS_BG3P (designated as BG3P hereafter), was isolated from chicken farm sewage. Both electron microscopy and phylogenetic analysis suggested that phage BG3P is a novel phage belonging to Siphoviridae family. Phage BG3P exhibited a broad host range against different C. perfringens isolates (90.63% of strains were infected). Sequencing of the complete genome revealed a linear double-stranded DNA (43,528 bp) with 28.65% GC content. After sequence analysis, 73 open reading frames (orfs) were predicted, of which only 13 were annotated with known functions. No tRNA and virulence encoding genes were detected. It should be noted that the protein of orf 15 has 97.92% homology to C. perfringens-specific chloramphenicol resistance protein, which has not been reported for any C. perfringens phage. Phylogenetic analysis of the ssDNA binding protein demonstrated that this phage is closely related to C. perfringens phages phiSM101 and phi3626. In considering future use as an antimicrobial agent, some biological characteristics were observed, such as a good pH (3–11) stability and moderate temperature tolerance (<60 °C). Moreover, bacteriophage BG3P showed a good antimicrobial effect against C. perfringens liquid cultures. Thus, phage treatment with MOI ≥ 100 completely inhibited bacterial growth compared to untreated cultures. Although phage BG3P shows good lytic efficiency and broad host range in vitro, future development and application may need to consider removal of the chloramphenicol-like resistance gene or exploring its lysin for future antibacterial applications.
Clostridium perfringens is a gram-positive, anaerobic, spore-forming bacterium capable of producing four major toxins which cause disease symptoms and pathogenesis in humans and animals. C. perfringens strains carrying enterotoxins can cause food poisoning in humans and are associated with meat consumption. An endolysin, named LysCP28, is encoded by orf28 from C. perfringens bacteriophage BG3P. This protein has an N-terminal glycosyl–hydrolase domain (lysozyme) and a C-terminal SH3 domain. Purified LysCP28 (38.8 kDa) exhibited a broad spectrum of lytic activity against C. perfringens strains (77 of 96 or 80.21%), including A, B, C, and D types, isolated from different sources. Moreover, LysCP28 (10 μg/mL) showed high antimicrobial activity and was able to lyse 2 × 107 CFU/mL C. perfringens ATCC 13124 and C. perfringens J21 (animal origin) within 2 h. Necessary due to this pathogenic bacterium’s ability to form biofilms, LysCP28 (18.7 μg/mL) was successfully evaluated as an antibiofilm agent in both biofilm removal and formation inhibition. Finally, to confirm the efficacy of LysCP28 in a food matrix, duck meat was contaminated with C. perfringens and treated with endolysin (100 µg/mL and 50 µg/mL), which reduced viable bacteria by 3.2 and 3.08 units-log, respectively, in 48 h at 4 °C. Overall, the endolysin LysCP28 could potentially be used as a biopreservative to reduce C. perfringens contamination during food processing.
Background Listeria monocytogenes is one of the deadliest foodborne pathogens. The bacterium can tolerate severe environments through biofilm formation and antimicrobial resistance. This study aimed to investigate the antimicrobial susceptibility, resistance genes, virulence, and molecular epidemiology about Listeria from meat processing environments. Methods This study evaluated the antibiotic resistance and virulence of Listeria isolates from slaughtering and processing plants. All isolates were subjected to antimicrobial susceptibility testing using a standard microbroth dilution method. The harboring of resistant genes was identified by polymerase chain reaction. The multilocus sequence typing was used to determine the subtyping of the isolates and characterize possible routes of contamination from meat processing environments. The virulence of different STs of L. monocytogenes isolates was evaluated using a Caco-2 cell invasion assay. Results A total of 59 Listeria isolates were identified from 320 samples, including 37 L. monocytogenes isolates (62.71%). This study evaluated the virulence of L. monocytogenes and the antibiotic resistance of Listeria isolates from slaughtering and processing plants. The susceptibility of these 59 isolates against 8 antibiotics was analyzed, and the resistance levels to ceftazidime, ciprofloxacin, and lincomycin were as high as 98.31% (L. m 37; L. innocua 7; L. welshimeri 14), 96.61% (L. m 36; L. innocua 7; L. welshimeri 14), and 93.22% (L. m 35; L. innocua 7; L. welshimeri 13), respectively. More than 90% of the isolates were resistant to three to six antibiotics, indicating that Listeria isolated from meat processing environments had high antimicrobial resistance. Up to 60% of the isolates harbored the tetracycline-resistance genes tetA and tetM. The frequency of ermA, ermB, ermC, and aac(6′)-Ib was 16.95, 13.56, 15.25, and 6.78%, respectively. Notably, the resistant phenotype and genotype did not match exactly, suggesting that the mechanisms of antibiotic resistance of these isolates were likely related to the processing environment. Multilocus sequence typing (MLST) revealed that 59 Listeria isolates were grouped into 10 sequence types (STs). The dominant L. monocytogenes STs were ST5, ST9, and ST121 in the slaughtering and processing plant of Jiangsu province. Moreover, ST5 subtypes exhibited high invasion in Caco-2 cells compared with ST9 and ST121 cells. Conclusion The dominant L. monocytogenes ST5 persisted in the slaughtering and processing plant and had high antimicrobial resistance and invasion characteristics, illustrating a potential risk in food safety and human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.