Artificial light-harvesting systems (LHSs) have drawn increasing research interest in recent times due to the energy crisis worldwide. Concurrently, macrocycle-based host-guest interactions have played an important role in the development of supramolecular chemistry. In recent years, studies towards artificial LHSs driven by macrocycle-based host-guest interactions are gradually being disclosed. In this mini-review, we briefly introduce the burgeoning progress of artificial LHSs driven by host-guest interactions. We believe that an increasing number of reports of artificial LHSs driven by host-guest interactions will appear in the near future and will provide a viable alternative for the future production of renewable energy.
Pillar[n]arenes are a new kind of supramolecular macrocyclic hosts which have developed rapidly due to their unique topology and high functionality, giving rise to many applications in the construction of interesting and functional materials. Among them, water-soluble pillar[n]arenes bearing triethylene oxide (TEO) chains have drawn increasing research interest due to their advantageous properties. In this review, we summarized the recent progress of dynamic materials fabricated from water soluble pillar[n] arenes bearing TEO groups, including thermoresponsive materials with lower critical solution temperature (LCST) behavior, cyclic host liquids, and smart windows. It is anticipated that more and more 'smart' supramolecular materials based on modified pillar[n]arenes will be developed in this burgeoning area of research.
Pillar[n]arenes are new generation of supramolecular macrocyclic host, which exhibit excellent hostÀguest recognition properties. In the last decade, functional materials constructed from pillar[n]arenes have been attracted more and more attention and displayed outstanding characteristics, such as stimuli-responsiveness, self-healing and adaptability. In this mini-review, we provide a survey of the pillar[n]arene-based literatures covering lightharvesting systems, functional hydrogels, and solid materials. It is anticipated that more and more pillar[n]arenesbased advanced materials with multi-functional properties will appear in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.