CO2 transports in the Earth’s interior play a crucial role in understanding the deep carbon cycle and the global climate changes. Currently, CO2 transports inside of the Earth under extreme condition of pressure and temperature have not been understood well. In this study, the molecular dynamics (MD) calculations were performed to study CO2 transports under different CO2 pressures in slit-like magnesite pores with different pore sizes at 350~2500 K and 3~50 GPa are presented. Diffusion of CO2 in magnesite was improved as the temperature increases but showed the different features as a function of pressure. The diffusion coefficients of CO2 in magnesite were found in the range of
9
×
10
−
12
m
2
s
−
1
~
28000
×
10
−
12
m
2
s
−
1
. Magnesite with the pore size of 20~25 Å corresponds to the highest transports. Anisotropic diffusion of CO2 in magnesite may help to understand the inhomogeneous distribution of carbon in the upper mantle. The time of CO2 diffusion from the mantle to Earth surface was estimated to be around several tens of Ma and has an important effect on deep carbon cycle. The simulation of CO2 transports based on the Earth condition provides new insights to revealing the deep carbon cycle in the Earth’s interiors.
The regioselectivity of the biradical cyclization of enyne‐carbodiimides 1 can easily be controlled by variation of R1 at the alkyne terminus. Attachment of a hydrogen atom (R1=H) leads to C2–C7 cyclization and formation of biradical 2, whereas C2–C6 cyclization to provide biradical 3 is observed with R1=Me3Si or Ph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.