Seismic risk assessment at the territorial level is now widely recognised as essential for countries with intense seismic activity, such as Italy. Academia is called to give its contribution in order to synergically deepen the knowledge about the various components of this risk, starting from the complex evaluation of vulnerability of the built heritage. In line with this, a mechanics-based seismic fragility model for Italian residential masonry buildings was developed and presented in this paper. This model is based on the classification of the building stock in macro-typologies, defined by age of construction and number of storeys, which being information available at national level, allow simulating damage scenarios and carrying out risk analyses on a territorial scale. The model is developed on the fragility of over 500 buildings, sampled according to national representativeness criteria and analysed through the Vulnus_4.0 software. The calculated fragility functions were extended on the basis of a reference model available in the literature, which provides generic fragilities for the EMS98 vulnerability classes, thus obtaining a fragility model defined on the five EMS98 damage states. Lastly, to assess the reliability of the proposed model, this was used to simulate damage scenarios due to the 2009 L’Aquila earthquake. Overall, the comparison between model results and observed damage showed a good fit, proving the model effectiveness.
Residential masonry buildings represent a large stock among highly vulnerable structures in medium–high seismic hazard areas, often built without any anti-seismic provisions. Their rehabilitation and/or strengthening according to optimised intervention strategies is topical and may contribute to revaluating zones characterized by depopulation phenomena. In this paper, a terraced building struck by the 2016 Central Italy earthquake is analysed through a frame by macro element (FME) model. The building is composed of six two-storey units made of stone and clay block masonry walls and semi-rigid diaphragms. The numerical model was calibrated based on the damage pattern caused by the earthquake and then used to carry out parametric analyses on the strengthened conditions by simulating both one unit and the entire terrace. The effects of interventions applied to either vertical or horizontal components, both singularly and in combination, were analysed in terms of nonlinear static analyses, and quantified by a performance factor, according to the upgraded seismic code in Italy. Kinematic analyses also completed the assessment of the building. Results compared the capacity of interventions in attaining the targets defined for improvement at both local and overall levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.