Essential oils (EOs) have gained economic importance due to their biological activities, and increasing amounts are demanded everywhere. However, substantial differences between the same essential oil samples from different suppliers are reported—concerning their chemical composition and bioactivities—due to numerous companies involved in EOs production and the continuous development of online sales. The present study investigates the antibacterial and antibiofilm activities of two to four samples of five commercially available essential oils (Oregano, Eucalyptus, Rosemary, Clove, and Peppermint oils) produced by autochthonous companies. The manufacturers provided all EOs’ chemical compositions determined through GC-MS. The EOs’ bioactivities were investigated in vitro against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The antibacterial and antibiofilm effects (ABE% and, respectively, ABfE%) were evaluated spectrophotometrically at 562 and 570 nm using microplate cultivation techniques. The essential oils’ calculated parameters were compared with those of three standard broad-spectrum antibiotics: Amoxicillin/Clavulanic acid, Gentamycin, and Streptomycin. The results showed that at the first dilution (D1 = 25 mg/mL), all EOs exhibited antibacterial and antibiofilm activity against all Gram-positive and Gram-negative bacteria tested, and MIC value > 25 mg/mL. Generally, both effects progressively decreased from D1 to D3. Only EOs with a considerable content of highly active metabolites revealed insignificant differences. E. coli showed the lowest susceptibility to all commercially available essential oils—15 EO samples had undetected antibacterial and antibiofilm effects at D2 and D3. Peppermint and Clove oils recorded the most significant differences regarding chemical composition and antibacterial/antibiofilm activities. All registered differences could be due to different places for harvesting the raw plant material, various technological processes through which these essential oils were obtained, the preservation conditions, and complex interactions between constituents.
Essential oils were obtained from different parts of Agastache foeniculum (Lophanthus anisatus) plants by means of extraction: green extraction using hydro-distillation (HD) and bio-solvent distillation, BiAD, discontinuous distillation, and supercritical fluid extraction, in two stages: (1) with CO2, and (2) with CO2 and ethanol co-solvent. The extraction yields were determined. The yield values varied for different parts of the plant, as well as the method of extraction. Thus, they had the values of 0.62 ± 0.020 and 0.92 ± 0.015 g/100 g for the samples from the whole aerial plant, 0.75 ± 0.008 and 1.06 ± 0.005 g/100 g for the samples of leaves, and 1.22 ± 0.011 and 1.60 ± 0.049 g/100 g for the samples of flowers for HD and BiAD, respectively. The yield values for supercritical fluid extraction were of 0.94 ± 0.010 and 0.32 ± 0.007 g/100 g for the samples of whole aerial plant, 0.9 ± 0.010 and 1.14 ± 0.008 g/100 g for the samples of leaves, and 1.94 ± 0.030 and 0.57 ± 0.003 g/100 g for the samples of flowers, in the first and second stages, respectively. The main components of Lophanthus anisatus were identified as: estragon, limonene, eugenol, chavicol, benzaldehyde, and pentanol. The essential oil from Agatache foeniculum has antimicrobial effects against Staphylococcus aureus, the Escherichia coli and Pseudomonas aeruginosa. Acclimatization of Lophantus anisatus in Romania gives it special qualities by concentrating components such as: estragole over 93%, limonene over 8%, especially in flowers; and chavicol over 14%, estragole over 30%, eugenol and derivatives (methoxy eugenol, methyl eugenol, etc.) over 30% and phenyl ether alcohol over 20% in leaves. As a result of the research carried out, it was proven that Lophanthus anisatus can be used as a medicinal plant for many diseases, it can be used as a spice and preservative for various foods, etc.
Green chemistry is a pharmaceutical industry tool, which, when implemented correctly, can lead to a minimization in resource consumption and waste. An aqueous extract of Salix alba L. was employed for the efficient and rapid synthesis of silver/gold particle nanostructures via an inexpensive, nontoxic and eco-friendly procedure. The nanoparticles were physicochemically characterized using ultraviolet–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), X-ray diffraction (XRD) and scanning electron microscopy (SEM), with the best stability of up to one year in the solution obtained for silver nanoparticles without any chemical additives. A comparison of the antimicrobial effect of silver/gold nanoparticles and their formulations (hydrogels, ointments, aqueous solutions) showed that both metallic nanoparticles have antibacterial and antibiofilm effects, with silver-based hydrogels having particularly high antibiofilm efficiency. The highest antibacterial and antibiofilm efficacies were obtained against Pseudomonas aeruginosa when using silver nanoparticle hydrogels, with antibiofilm efficacies of over 75% registered. The hydrogels incorporating green nanoparticles displayed a 200% increased bacterial efficiency when compared to the controls and their components. All silver nanoparticle formulations were ecologically obtained by “green synthesis” and were shown to have an antimicrobial effect or potential as keratinocyte-acting pharmaceutical substances for ameliorating infectious psoriasis wounds.
Essential oils (EOs) have gained economic importance due to their biological activities, and increasing amounts are demanded everywhere. However, substantial differences between the same essential oil samples from different suppliers are reported due to numerous companies involved in EOs production and the continuous development of online sales. The present study investigates the antibacterial and antibiofilm activities of 2-4 samples of five commercially available essential oils (Oregano, Eucalyptus, Rosemary, Clove, and Peppermint oils) from different manufacturers. Their effects were evaluated in vitro on Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). The antibacterial efficacy (ABE%) and antibiofilm efficacy (ABfE%) were determined spectrophotometrically at 562 and 570 nm using microplate cultivation techniques. The essential oils' calculated parameters were compared with those of three standard broad-spectrum antibiotics: Amoxicillin/Clavulanic acid (AMC), Gentamycin (GEN), and Streptomycin (STR), active on tested bacteria. The results showed that at the first dilution (D1 = 2.5 mg/mL), all essential oils (EOs) exhibited antibacterial activity against Gram-positive and Gram-negative bacteria. On S. aureus and E. coli, EOs had considerable antibacterial effects (ABE = 79.70—92.80%, respectively, 71.30 ‒ 94.00%). The highest antibacterial effects of commercially available EOs were against P. aeruginosa because all exhibited a significant antibiofilm activity. Their antibiofilm efficacy intensively decreased on E. coli and S. aureus. Generally, the samples with different manufacturers of the same EO showed similar effects. Only Clove and Peppermint oils samples displayed a higher variability associated with active metabolites' different contents, maybe due to various zones of harvesting raw material, numerous technologies involved in EOs obtaining processes, and complex interactions between components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.