In chronic kidney disease (CKD), oxidative stress (OS) plays a central role in the development of cardiovascular diseases. This pilot program aimed to determine whether an intradialytic aerobic cycling training protocol, by increasing physical fitness, could reduce OS and improve other CKD-related disorders such as altered body composition and lipid profile. Eighteen hemodialysis patients were randomly assigned to either an intradialytic training (cycling: 30 min, 55%-60% peak power, 3 days/week) group (EX; n = 8) or a control group (CON; n = 10) for 3 months. Body composition (from dual-energy X-ray absorptiometry), physical fitness (peak oxygen uptake and the 6-minute walk test (6MWT)), lipid profile (triglycerides (TG), total cholesterol, high-density lipoprotein, and low-density lipoprotein (LDL)), and pro/antioxidant status (15-F2α-isoprostanes (F2-IsoP) and oxidized LDL in plasma; superoxide dismutase, glutathione peroxidase, and reduced/oxidized glutathione in erythrocytes) were determined at baseline and 3 months later. The intradialytic training protocol did not modify body composition but had significant effects on physical fitness, lipid profile, and pro/antioxidant status. Indeed, at 3 months: (i) performance on the 6MWT was increased in EX (+23.4%, p < 0.001) but did not change in CON, (ii) plasma TG were reduced in EX (-23%, p < 0.03) but were not modified in CON, and (iii) plasma F2-IsoP concentrations were lower in EX than in CON (-35.7%, p = 0.02). In conclusion, our results show that 30 min of intradialytic training, 3 times per week for 3 months, are enough to exert beneficial effects on the most sensitive and reliable marker of lipid peroxidation (IsoP) while improving CKD-associated disorders (lipid profile and physical fitness). Intradialytic aerobic cycling training represents a useful and easy strategy to reduce CKD-associated disorders. These results need to be confirmed with a larger randomized study.
This study evidenced obvious insufficient energy intake in ultra endurance athletes associated with a low antioxidant vitamin intake.
BackgroundInformations about the effects of intense exercise training on diabetes-induced myocardial dysfunctions are lacking. We have examined the effects of intense exercise training on the cardiac function of diabetic rats, especially focusing on the Langendorff β-adrenergic responsiveness and on the β-adrenoceptors protein expression.MethodsControl or Streptozotocin induced-diabetic male Wistar rats were randomly assigned to sedentary or trained groups. The training program consisted of 8 weeks running on a treadmill (10° incline, up to 25 m/min, 60 min/day) and was considered to be intense for diabetic rats.ResultsThis intense exercise training amplified the in vivo diabetes-induced bradycardia. It had no effect on Langendorff basal cardiac contraction and relaxation performances in control and diabetic rats. In diabetic rats, it accentuated the Langendorff reduced responsiveness to β-adrenergic stimulation. It did not blunt the diabetes-induced decrease of β1-adrenoceptors protein expression, displayed a significant decrease in the β2-adrenoceptors protein expression and normalized the β3-adrenoceptors protein expression.ConclusionsIntense exercise training accentuated the decrease in the myocardial responsiveness to β-adrenergic stimulation induced by diabetes. This defect stems principally from the β2-adrenoceptors protein expression reduction. Thus, these results demonstrate that intense exercise training induces specific effects on the β-adrenergic system in diabetes.
Oxidative stress and inflammation are involved in the development of type 1 diabetes and its complications. Because two compounds found in soy, that is, isoflavones and alpha-galactooligosaccharides, have been shown to exert antioxidant and anti-inflammatory effects, this study aimed to assess the effects of a dietary supplement containing these two active compounds, the fermented soy permeate (FSP). We hypothesized that FSP would be able to reduce in vivo oxidative stress and inflammation in streptozotocin (STZ)-induced type 1 diabetic rats. Thirty male Wistar rats were divided into the control placebo, diabetic placebo, and diabetic FSP-supplemented groups. They received daily, by oral gavage, water (placebo groups) or diluted FSP (0.1 g/day; FSP-supplemented group). After 3 weeks, glycemic regulation (glycemia and fructosamine level); the plasma level of carboxymethyllysine (CML), a marker of systemic oxidative stress in diabetes; and the plasma levels of inflammatory markers (CRP, IL-1β, IL-6, and uric acid) were evaluated. Markers of oxidative damage (isoprostanes and GSH/GSSG), antioxidant enzymatic activity (SOD and GPX), and Mn-SOD content were determined in skeletal muscle (gastrocnemius). Diabetic placebo rats exhibited higher CML levels, lower SOD and GPX activities, and decreased Mn-SOD contents. FSP supplementation in diabetic animals normalized the CML and antioxidant enzymatic activity levels and tended to increase Mn-SOD expression. The markers of inflammation whose levels were increased in the diabetic placebo group were markedly decreased by FSP (IL-1β: -75%, IL-6: -46%, and uric acid: -17%), except for CRP. Our results demonstrate that FSP exhibited antioxidant and anti-inflammatory properties in vivo in STZ-induced diabetic rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.