We investigated association between polymorphisms in DNA repair genes and the capacity to repair DNA damage induced by gamma-irradiation and by base oxidation in a healthy population. Irradiation-specific DNA repair rates were significantly decreased in individuals with XRCC1 Arg399Gln homozygous variant genotype (0.45 +/- 0.47 SSB/10(9) Da) than in those with wild-type genotype (1.10 +/- 0.70 SSB/10(9) Da, P=0.0006, Mann-Witney U-test). The capacity to repair oxidative DNA damage was significantly decreased among individuals with hOGG1 Ser326Cys homozygous variant genotype (0.37 +/- 0.28 SSB/10(9) Da) compared to those with wild-type genotype (0.83 +/- 0.79 SSB/10(9) Da, P=0.008, Mann-Witney U-test). Investigation of genotype combinations showed that the increasing number of variant alleles for both XRCC1 Arg399Gln and APE1 Asn148Glu polymorphisms resulted in a significant decrease of irradiation-specific repair rates (P=0.008, Kruskal-Wallis test). Irradiation-specific DNA repair rates also decreased with increasing number of variant alleles in XRCC1 Arg399Gln in combination with variant alleles for two other XRCC1 polymorphisms, Arg194Trp and Arg280His (P=0.002 and P=0.005, respectively; Kruskal-Wallis test). In a binary combination variant alleles of hOGG1 Ser326Cys and APE1 Asn148Glu polymorphisms were associated with a significant decrease in the capacity to repair DNA oxidative damage (P=0.018, Kruskal-Wallis test). In summary, XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms seem to exert the predominant modulating effect on irradiation-specific DNA repair capacity and the capacity to repair DNA oxidative damage, respectively.
Workers employed in tire plants are exposed to a variety of xenobiotics, such as 1,3-butadiene (BD), soots containing polycyclic aromatic hydrocarbons, and other organic chemicals (e.g., styrene). In the present study, we investigated markers of genotoxicity [chromosomal aberrations (CAs) and single-strand breaks (SSBs)] in a cohort of 110 tire plant workers engaged in jobs with different levels of xenobiotic exposure in relation to various polymorphisms in genes coding for biotransformation enzymes (CYP1A1, CYP2E1, EPHX1, GSTM1, GSTP1, and GSTT1) and in genes involved in DNA repair (XPD exon 23, XPG exon 15, XPC exon 15, XRCC1 exon 10, and XRCC3 exon 7). In addition, the expression of CYP2E1, a gene playing a key role in BD metabolism, was determined by real-time PCR in peripheral blood lymphocytes, and the capacity of lymphocytes to repair gamma-ray-induced SSBs and to convert 8-oxoguanine in HeLa cell DNA into SSBs was assessed using in vitro assays. No positive associations were detected between the CA frequency or SSB induction and levels of workplace exposure; however, a nonsignificant twofold higher irradiation-specific DNA repair rate was found among highly exposed workers. In evaluations conducted with the markers of individual susceptibility, workers with low-EPHX1-activity genotypes exhibited a significantly higher CA frequency as compared to those with medium and high-EPHX1-activity genotypes (P = 0.050). CA frequencies were significantly lower in individuals homozygous for the XPD exon 23 variant allele in comparison to those with the wild-type CC genotype (P = 0.003). Interestingly, CAs were higher in individuals with higher CYP2E1 expression levels, but the association was nonsignificant (P = 0.097). The results from this study suggest the importance of evaluating markers of individual susceptibility, since they may modulate genotoxic effects induced by occupational exposure to xenobiotics.
We report significantly increased chromosomal damage among medical staff occupationally exposed to various genotoxic compounds in several medical professions. Potentially harmful exposures in hospital environment represent considerable health risk, since chromosomal aberrations have been found to be predictive of cancer risk, and an association between chromosomal damage and cancer risk has been shown.
Affiliation:
Epidemiological prospective studies have shown that increased chromosomal aberrations (CAs) in peripheral blood lymphocytes may predict cancer risk. Here, we report CAs in newly diagnosed 101 colorectal, 87 lung and 158 breast cancer patients and corresponding healthy controls. Strong differences in distributions of aberrant cells (ACs), CAs, chromatid-type aberrations (CTAs) and chromosome-type aberrations (CSAs) were observed in lung and breast cancer patients as compared to healthy controls. In colorectal cancer (CRC) patients, only CTAs were significantly elevated. Binary logistic regression, adjusted for main confounders, indicates that all the analysed cytogenetic parameters along with smoking were significantly associated with breast and lung cancer risks. Significant differences in terminal deletions between breast cancer patients and corresponding female controls were recorded (0.39 vs. 0.18; P ≤ 0.05). We did not find any association of CAs with TNM (tumor nodus metastasis) stages or histopathological grade in either cancer type. CAs were neither associated with additional tumor characteristics-invasivity, ductal and lobular character, estrogene/progesterone receptors in breast tumors nor with non-small/small cell and bronchogenic/pulmonary types of lung tumors. Our study demonstrates that CAs serve as a predictive marker for breast and lung cancer, whereas only CTAs were elevated in incident CRC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.