Maize (Zea mays) is considered one of the most important crops for world food security. Globally, Brazil is the second largest maize producer and the fourth largest maize consumer. The climate variables is one of the main determining factors for crop yield. Given the possibility of future climate changes, our objective was to evaluate the impact of climate change on maize crop growth and development, assessed strategies to cope with the future crop and to quantify the impacts on various producing regions of Brazil.The DSSAT/CERES-Maize model was calibrated with field data and then used to simulate current and six future climate scenarios, according to the AgMIP protocols. We selected three regional climate AGROMETEOROLOGY -Article circulation models (GCMs) and two representative concentration pathways (RCPs) for the period of 2040-2069. For most of the producing regions, the simulations showed a decreasing trend during both the summer and autumn sowing seasons, except the autumn crops in Southern Brazil. We found the air temperature rise as the main factor for yield decreasing, and this finding provides an adaptation option to cope with future climate, as the country has a great latitudinal range for crop management, meaning genotypes with extended cycles could compensate the climate change, and thereby avoid the yield loss for maize crops.
Diante da importância econômica e social da produção de fibras no Brasil e no mundo, é relevante antever os possíveis impactos do clima futuro na produtividade de algodão em uma região onde a cultura é representativa. O presente estudo teve como objetivo simular cenários agrícolas futuros para a cultura do algodão, com base em projeções de mudanças climáticas, para o município de Barreiras, BA. Para isso, o modelo DSSAT/CROPGRO-COTTON foi calibrado com as características genéticas da cultivar CNPA ITA 90. A produtividade foi simulada para os últimos 30 anos (1980 - 2010), representando a produtividade no clima atual e, a fim de representar a produtividade em 2050, foram realizadas simulações para o período de 2040 - 2069 para seis cenários climáticos futuros gerados a partir da metodologia descrita pelo Agricultural Model Intercomparison and Improvement Project (AgMIP). A produtividade média nos cenários futuros variou de 4.652 kg ha-1 a 5.389 kg ha-1, apresentando um expressivo aumento nos seis cenários estudados, porém indicando maior risco climático para o cultivo do algodoeiro nesta região.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.