Clostridium difficile is responsible for significant mortality and morbidity in the hospitalized elderly. C. difficile spores are infectious and are a major factor contributing to nosocomial transmission. The Spo0A response regulator is the master regulator for sporulation initiation and can influence many other cellular processes. Using the ClosTron gene knockout system, we inactivated genes encoding Spo0A and a putative sporulation-associated sensor histidine kinase in C. difficile. Inactivation of spo0A resulted in an asporogeneous phenotype, whereas inactivation of the kinase reduced C. difficle sporulation capacity by 3.5-fold, suggesting that this kinase also has a role in sporulation initiation. Furthermore, inactivation of either spo0A or the kinase resulted in a marked defect in C. difficile toxin production. Therefore, Spo0A and the signaling pathway that modulates its activity appear to be involved in regulation of toxin synthesis in C. difficile. In addition, Spo0A was directly phosphorylated by a putative sporulation-associated kinase, supporting the hypothesis that sporulation initiation in C. difficile is controlled by a two-component signal transduction system rather than a multicomponent phosphorelay. The implications of these findings for C. difficile sporulation, virulence, and transmission are discussed.
Spontaneous lifetime control is demonstrated using very small apertured microcavities, with quantum-dot light emitters used to obtain electronic confinement within the aperture. A factor of 2.3 increase in the averaged spontaneous emission rate is achieved due to the optical confinement. The enhancement/inhibition ratio of the spontaneous emission rate tracks the optical mode size and spectral response of the apertured microcavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.