Chilling stress limits the productivity and geographical distribution of many organisms throughout the world. In plants, the small heat shock proteins (sHSPs) belong to a group of proteins known as chaperones. The sweet pepper (Capsicum annuum L.) cDNA clone CaHSP22.5, which encodes an endoplasmic reticulum-located sHSP (ER-sHSP), was isolated and introduced into tobacco (Nicotiana tabacum L.) plants and Escherichia coli. The performance index and the maximal efficiency of PSII photochemistry (Fv/Fm) were higher and the accumulation of H2O2 and superoxide radicals (O2–) was lower in the transgenic lines than in the untransformed plants under chilling stress, which suggested that CaHSP22.5 accumulation enhanced photochemical activity and oxidation resistance. However, purified CaHSP22.5 could not directly reduce the contents of H2O2 and O2– in vitro. Additionally, heterologously expressed recombinant CaHSP22.5 enhanced E. coli viability under oxidative stress, helping to elucidate the cellular antioxidant function of CaHSP22.5 in vivo. At the same time, antioxidant enzyme activity was higher, which was consistent with the lower relative electrolyte conductivity and malondialdehyde contents of the transgenic lines compared with the wild-type. Furthermore, constitutive expression of CaHSP22.5 decreased the expression of other endoplasmic reticulum molecular chaperones, which indicated that the constitutive expression of ER-sHSP alleviated endoplasmic reticulum stress caused by chilling stress in plants. We hypothesise that CaHSP22.5 stabilises unfolded proteins as a chaperone and increases the activity of reactive oxygen species-scavenging enzymes to avoid oxidation damage under chilling stress, thereby suggesting that CaHSP22.5 could be useful for improving the tolerance of chilling-sensitive plant types.
Nuclear matrix attachment regions (MARs) regulate the higher-order organization of chromatin and affect the expression of their flanking genes. In this study, a tobacco MAR, TM6, was isolated and demonstrated to remarkably increase the expression of four different promoters that drive gusA gene and adjacent nptII gene. In turn, this expression enhanced the transformation frequency of transgenic tobacco. Deletion analysis of topoisomerase II-binding site, AT-rich element, and MAR recognition signature (MRS) showed that MRS has the highest contribution (61.7%) to the TM6 sequence-mediated transcription activation. Micrococcal nuclease (MNase) accessibility assay showed that 35S and NOS promoter regions with TM6 are more sensitive than those without TM6. The analysis also revealed that TM6 reduces promoter DNA methylation which can affect the gusA expression. In addition, two tobacco chromatin-associated proteins, NtMBP1 and NtHMGB, isolated using a yeast one-hybrid system, specifically bound to the TM6II-1 region (761 bp to 870 bp) and to the MRS element in the TM6II-2 (934 bp to 1,021 bp) region, respectively. We thus suggested that TM6 mediated its chromatin opening and chromatin accessibility of its flanking promoters with consequent enhancement of transcription.
Background Cytokinins are one of the five major hormones families in plants and are important for their normal growth and environmental adaptability. In plants, cytokinins are mostly present as glycosides in plants, and their glycosylation modifications are catalyzed by family 1 glycosyltransferases. Current research on cytokinin glycosylation has focused on the biochemical identification of enzymes and the analysis of metabolites in Arabidopsis. There are few studies that examine how cytokinin glycosylation affects its synthesis and accumulation in plants. It is particularly important to understand these processes in food crops such as rice ( Oryza sativa ); however, to date, cytokinin glycosyltransferase genes in rice have not been reported. Results In this study, we identified eight rice genes that were functionally homologous to an Arabidopsis cytokinin glycosyltransferase gene. These genes were cloned and expressed in a prokaryotic system to obtain their purified proteins. Through enzymatic analysis and liquid chromatography-mass spectrometry, a single rice glycosyltransferase, Os6 , was identified that glycosylated cytokinin in vitro. Os6 was overexpressed in Arabidopsis, and the extraction of cytokinin glycosides showed that Os6 is functionally active in planta . Conclusions The identification and characterization of the first cytokinin glycosyltransferase from rice is important for future studies on the cytokinin metabolic pathway in rice. An improved understanding of rice cytokinin glycosyltransferases may facilitate genetic improvements in rice quality. Electronic supplementary material The online version of this article (10.1186/s12284-019-0279-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.