Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.
Beef, buffalo and pork are the major meat of economic, religious and health concern. Current methods to authenticate these materials in food chain are based on mainly single gene targets which are susceptible to break down by food processing treatments. We, for the first time, described here a double gene targeting short-amplicon length multiplex polymerase chain reaction assay for discriminating bovine, buffalo and porcine materials in a single assay platform. The advantage of the assay is evidenced in terms of fidelity, cost and time since it is highly unlikely that two different targets would be missing even in a decomposed specimen. Detection of multiple targets in a single assay definitely saves analytical cost and time. Mitochondrial cytochrome b (cytb) and ND5 genes were targeted and six different targets (length: 90-146 bp), two for each of cow (120 and 106bp), buffalo (90 and 138bp) and pig (73 and 146bp), were amplified from raw, boiled, autoclaved and microwaved cooked meat under pure and mixed matrices. The detection limit was 0.02 ng DNA under pure states and 0.1% meat in binary mixtures and meatball products. Screening of Malaysian meatball products revealed all beef products were buffalo positive in which 35% were totally replaced. In contrast, all pork products were found uncontaminated from beef and buffalo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.