The aim of our investigation was to evaluate the humoral response to natural SARS-CoV-2 infection and to two COVID-19 vaccines (BNT162b2 Pfizer-BioNTech and Beijing/Sinopharm BBIBP-CorV) in our cohort of PwMS under high efficacy disease modifying therapies (DMTs), cladribine and alemtuzumab. Methods: Twenty two PwMS treated at the Clinic of Neurology, in Belgrade, who developed COVID-19 and/or were vaccinated against SARS-CoV-2, during treatment with cladribine and alemtuzumab, were included. Out of 18 patients treated with cladribine, 11 developed COVID-19, and 11 were vaccinated against SARS-CoV-2 (four with mRNA vaccine, 7 with Sinopharm). Four MS patients under alemtuzumab were vaccinated against SARS-CoV-2; three with mRNA, and one with Sinopharm vaccine. SARS-Cov-2 IgG response was measured using ELISA anti-spike protein-based serology (INEP, Belgrade, Serbia). Results: All 7 patients under cladribine treatment who suffered from COVID-19, developed IgG antibodies, 2.0-5.5 months after last symptoms. All four (100%) patients under cladribine who were vaccinated with Pfizer-BioNTech vaccine, and three out of seven (42.9%) vaccinated with Sinopharm, developed antibodies. All 4 patients under alemtuzumab developed antibodies after vaccination. In all cases, seroprotection occurred, irrespective of timing of vaccination and absolute lymphocyte count. Conclusion: Our findings in a small number of highly active PwMS in whom, lymphodepleting, immune reconstitution therapies, were applied in order to successfully manage MS, indicate that in a number of these patients it was possible to develop at the same time seroprotection in these patients after COVID-19 vaccination in these complex circumstances.
Diagnostic evaluation of specific antibodies against the SARS-CoV-2 virus is mainly based on spike (S) and nucleocapsid (N) proteins. Despite the critical functions in virus infection and contribution to the pattern of immunodominance in COVID-19, exploitation of the most abundant membrane (M) protein in the SARS-CoV-2 serology tests is minimal. This study investigated the recombinant M protein’s immunoreactivity with the sera from COVID-19 convalescents. In silico designed protein was created from the outer N-terminal part (19 aa) and internal C-terminal tail (101–222 aa) of the M protein (YP_009724393.1) and was recombinantly produced and purified. The designed M protein (16,498.74 Da, pI 8.79) revealed both IgM and IgG reactivity with serum samples from COVID-19 convalescents in Western blot. In ELISA, more than 93% (28/30) of COVID-19 sera were positive for IgM detection, and more than 96% (29/30) were positive for specific IgG detection to M protein. Based on the capacity to provoke an immune response and its strong antigenic properties, as shown here, and the fact that it is also involved in the virion entry into host cells, the M protein of the SARS-CoV-2 virus as a good antigen has the potential in diagnostic purposes and vaccine design.
Infection with parasites from the Trichinella genus occurs in many vertebrates but disease only occurs in humans (trichinellosis). Humans are infected after the consumption of raw or undercooked meat from infected wild or domestic animals (usually swine or horses). Using the monoclonal antibody (mAb) 7C2C5, specific for an epitope unique to the muscle larvae of the genus Trichinella, we have developed a competitive enzyme-linked immunosorbent assay (c-ELISA) that enables the rapid detection of Trichinella-specific antibodies in sera originating from two different host species (human, swine) infected with either Trichinella spiralis or Trichinella britovi. This novel c-ELISA exhibited 100% specificity and sensitivity, as confirmed by a Western blot test. The assay is easy to use (one incubation step), and the time required for the procedure (45 min) is shorter than in any other ELISA format. This test could be useful for both the detection and surveillance of Trichinella infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.