-We demonstrate for the first time generation of 16-state quadrature amplitude modulation (16QAM) signals at a symbol rate of 40 GBd using silicon-based modulators. Our devices exploit silicon-organic hybrid (SOH) integration, which combines silicon-on-insulator slot waveguides with electro-optic cladding materials to realize highly efficient phase shifters. The devices enable 16QAM signaling and quadrature phase shift keying (QPSK) at symbol rates of 40 GBd and 45 GBd, respectively, leading to line rates of up to 160 Gbit/s on a single wavelength and in a single polarization. This is the highest value demonstrated by a silicon-based device up to now. The energy consumption for 16QAM signaling amounts to less than 120 fJ/bit -one order of magnitude below that of conventional silicon photonic 16QAM modulators.Manuscript received XX; revised YY; accepted ZZ. Date of publication XYZ.
We demonstrate 16QAM and QPSK modulation at symbol rates of 40 GBd and 45 GBd using a silicon-based IQ modulator. The device enables data rates up to 160 Gbit/s in a single polarization with an estimated energy consumption of 120fJ/bit.
IntroductionHigh-performance IQ-modulators are key elements for high-speed links in telecom and datacom networks. Silicon photonics is a particularly attractive platform for realizing such devices, leveraging mature CMOS processing and enabling large-scale integration of photonic devices along with electronic circuitry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.