A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.
The first clinical trial with carbon beams generated from HIMAC was conducted in June 1994. The total number of patients treated as of December 2006 was in excess of 3,000. In view of the significant growth in the number of protocols, the Japanese government gave its approval for carbon-ion therapy at NIRS as an advanced medical technology in 2003. The impressive advances of carbon-ion therapy using HIMAC have been supported by high-reliability operation and by advanced developments of beam-delivery and accelerator technologies. Based on our ten years of experience with HIMAC, we recently proposed a new accelerator facility for cancer therapy with carbon ions for widespread use in Japan. The key technologies of the accelerator and beam-delivery systems for this proposed facility have been under development since April 2004, with the main thrust being focused on downsizing the facility for cost reduction. Based on the design and R&D studies for the proposed facility, its construction was begun at Gunma University in April 2006. In addition, our future plans for HIMAC also include the design of a new treatment facility. The design work has already been initiated, and will lead to the further development of therapy using HIMAC. The following descriptions give a summary account of the new accelerator facility for cancer therapy with carbon ions and of the new treatment facility at HIMAC.
Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.