The mole vole subgenus Ellobius is currently considered to include three species: Ellobius talpinus (distributed from SE Europe and Turkmenistan through Kazakhstan to SW Siberia), Ellobius alaicus (S Tianshan, Pamir‐Alay) and Ellobius tancrei (East and West Central Asia, from the Amu‐Darya to Mongolia and N China). A study focusing on the genetic variation in Ellobius from Mongolia was conducted using one mitochondrial and three nuclear markers. Two divergent allopatric lineages endemic to East Central Asia were revealed. The first lineage occurs from Dzungaria eastwards to central Mongolia and represents E. tancrei sensu stricto. The second lineage is found in East Gobi only and corresponds to a taxon described as Ellobius orientalis, which has been traditionally treated as a subspecies of E. tancrei. However, molecular and chromosome data indicate that orientalis is related not to E. tancrei but to E. talpinus, which is separated from the former by a distribution gap of ~2,000 km. The taxonomic status of the East Gobi mole vole is ambiguous, and its genetic distance from E. talpinus s. str. falls into the range characteristic for closely related vole species or semi‐species. According to molecular estimates, the two taxa have been isolated since the late Middle Pleistocene. A similar divergence is observed between the East and West Central Asian lineages of E. tancrei. E. alaicus is placed as sister to the latter rendering E. tancrei sensu lato paraphyletic. The revealed phylogeographic pattern implies that East Central Asia was colonized by mole voles through multiple eastward dispersal events.
Multiple band patterns of DNA repeats in the 20-500-nucleotide range can be detected by digesting genomic DNA with short-cutting restriction endonucleases, followed by end labeling of the restriction fragments and fractionation in nondenaturing polyacrylamide gels. We call such band patterns obtained from genomic DNA "taxonprints" (Fedorov et al. 1992). Here we show that taxonprints for the taxonomic groups studied (mammals, reptiles, fish, insects-altogether more than 50 species) have the following properties: (1) All individuals from the same species have identical taxonprints. (2) Taxonprint bands can be subdivided into those specific for a single species and those specific for groups of closely related species, genera, and even families. (3) Each restriction endonuclease produces unique band patterns; thus, five to ten restriction enzymes (about 100 bands) may be sufficient for a statistical treatment of phylogenetic relationships based on polymorphisms of restriction endinuclease sites. We demonstrate that taxonprint analysis allows one to distinguish closely related species and to establish the degree of similarity among species and among genera. These characteristics make taxonprint analysis a valuable tool for taxonomic and phylogenetic studies.
From a clone library containing microsatellite DNA fragments of Norway spruce, seven pairs of primers were selected. These primers were tested as markers in the genetic structure analysis of nine popula tions of Eurasian spruce species Picea abies (L.) Karst. and Picea obovata Ledeb. Five pairs of these primers identified polymorphic loci with allele numbers ranging from 6 to 15. In the populations examined, the observed and expected heterozygosity values assessed at five loci varied from 0.1778 to 0.6556 and from 0.7800 to 0.900, respectively. In the populations examined, the values of F st index varied from 0.0691 to 0.2551 with the mean value of 0.1318. On the dendrogram based on Nei genetic distances, the populations formed three groups: Pskov-Ciscarpathya, Komi-Tatarstan-Arkhangelsk, Kazakhstan-Karelia(natural)-Karelia(plan tation)-Krasnoyarsk. Five of the primer pairs tested proved to be useful for analysis of the population genetic structure in Eurasian spruce species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.