The bacteria associated with marine invertebrates are a rich source of bioactive metabolites. In the present study bacteria associated with the sponge Suberites domuncula and its primmorphs (3-dimensional aggregates containing proliferating cells) were isolated and cultured. These bacteria were extracted, and the extracts were assayed for antiangiogenic, hemolytic, antimicrobial, and cytotoxic activities. Our studies revealed that extract obtained from the bacterium (PB2) isolated from sponge primmorphs is a potent angiogenesis inhibitor. In the chick chorio-allantoic membrane (CAM) assay, it showed 50% activity at 5 microg ml(-1) and 100% activity at 10 and 20 microg ml(-1) concentrations. Extracts obtained from 5 bacterial strains isolated from sponge and its primmorphs showed hemolytic activity. The sponge-associated bacteria belonging to the alpha subdivision of Proteobacteria and the primmorph-associated bacterium identified as a possible novel Pseudomonas sp. displayed remarkable antimicrobial activity. It is important to note that these bacterial extracts were strongly active against multidrug-resistant clinical strains such as Staphylococcus aureus and Staphylococcus epidermidis, isolated from hospital patients. The bacterial extracts having antimicrobial activity also showed cytotoxicity against HeLa and PC12 cells. In summary, this investigation explores the importance of sponge-associated bacteria as a valuable resource for the discovery of novel bioactive molecules.
Sponges (Porifera), represent the phylogenetically oldest metazoan phylum still extant today. Recently, molecular biological studies provided compelling evidence that these animals share basic receptor/ligand systems, especially those involved in bodyplan formation and in immune recognition, with the higher metazoan phyla. An in vitro cell/organ-like culture system, the primmorphs, has been established that consists of proliferating and differentiating cells, but no canals of the aquiferous system. We show that after the transfer of primmorphs from the demosponge Suberites domuncula to a homologous matrix (galectin), canal-like structures are formed in these 3D-cell aggregates. In parallel with the formation of these structures a gene is expressed whose deduced protein falls into the CD36/LIMPII receptor family. The receptor was cloned and found to be strongly expressed after adhesion to the galectin matrix. This process was suppressed if primmorphs were co-incubated with a homologous polypeptide containing the CSVTCG domain, as found in thrombospondin-1 (and related) molecules of vertebrates. In situ hybridization studies revealed that the S. domuncula CD36/LIMPII receptor is localized in the pinacocytes that surround the canals of the sponge. Furthermore, a secondary metabolite from a sponge-associated bacterium was isolated and characterized, the 2-methylthio-1,4-naphthoquinone (MTN). MTN causes inhibition of cell proliferation of vertebrate tumor cells at concentrations of >80 ng/ml. However, doses of only 2 ng are required to potently inhibit angiogenesis in the chick chorio-allantoic membrane assay. At concentrations of 10 ng/ml this compound was also found to suppress the expression of the S. domuncula CD36/LIMPII; this result is a first indication that this secondary metabolite has a conserved functional activity: the suppression of the formation of the circulation system, from sponges to vertebrates.
Bone metabolism is a physiological process that maintains the skeletal integrity and bone functions. Skeletal integrity is always balanced by two key cell types-bone resorbing osteoclasts and bone-forming osteoblasts. Imbalance between generation and function of osteoclasts and osteoblasts often leads to pathological conditions such as osteoporosis, osteopetrosis, Paget's disease. Osteoporosis is one of the most common age-related diseases characterized by decreased bone mineral density and microarchitectural deterioration. Current therapies are indeed effective in preventing bone loss but are also followed by side effects. Since many years, marine organisms have been considered as a good source of bioactive molecules or compounds with potential pharmaceutical properties. Marine Natural Products (MNPs) derived from various marine resources such as marine cyanobacteria, dinoflagellates, algae, sponges, soft corals, molluscs, fishes, and mangroves had shown profound effect on bone metabolism through inhibiting osteoclastogenesis and up-regulating osteoblastogenesis via modulating RANK/RANKL/OPG pathway. Amongst the pre-clinically investigated MNPs for management of osteoporosis, very few are under phase I clinical trials. This review discusses the currently available pharmacological drugs and there major health concern in osteoporosis treatment. It further gives an insight into various marine resources and marine-derived bioactive products, depicting their mechanism of action, functional role, and how these can be exploited for the treatment of osteoporosis.
Marine molluscs are widely distributed throughout the world and many bioactive compounds exhibiting antiviral, antitumor, antileukemic, and antibacterial activity have been reported worldwide. The present study was designed to investigate the beneficial effect of methanol extract of Euchelus asper (EAME) on estrogen deficiency induced osteoporosis in ovariectomised mice model. Forty-two female Swiss albino mice were randomly assigned into Sham operated (Sham) group and six ovariectomised (OVX) subgroups such as OVX with vehicle (OVX); OVX with estradiol (2 mg/kg/day); OVX with EAME of graded doses (25, 50, 100, and 200 mg/kg/day). Bone turnover markers like serum alkaline phosphatase (ALP), serum acid phosphatase (ACP), serum calcium, and histological investigations of tibia and uterus were analysed. Metaphyseal DNA content of the femur bone was also studied. Antiosteoclastogenic activity of EAME was examined. Administration of EAME was able to reduce the increased bone turnover markers in the ovariectomised mice. Histomorphometric analysis revealed an increase in bone trabeculation and restoration of trabecular separation by EAME treatment. Metaphyseal DNA content of the femur of the OVX mice was increased by EAME administration. EAME also showed a potent antiosteoclastogenic behaviour. Thus, the present study reveals that EAME was able to successfully reduce the estrogen deficiency induced bone loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.