Background In the field of nanotechnology, the metallic nanoparticles are of remarkable interest because of their unique electronic, magnetic, chemical, and mechanical properties. Purpose: In the present work, silver nanoparticles (AgNPs) were synthesized using bio-reduction method. Research Design: Silver nitrate was used as metallic precursor and the extract of Moringa oleifera leaves with different concentrations was used as reducing as well capping agent. The extract exhibited strong potential in rapid reduction of silver ions for the synthesis of silver nanoparticles. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Results: The absorption SPR peaks appeared in the range of 415 to 439 nm. SEM analysis exhibited that particles were spherical in shape with size distribution range from 10 nm to 25 nm. The synthesized silver nanoparticles were pure crystalline in nature as confirmed by the XRD spectra with average crystallite size 7 nm. In vitro antibacterial activity of the prepared silver nanoparticles colloidal samples as well the extract was studied using different concentrations of AgNPs (C1 = 100 μg/ml, C2 = 50 μg/ml, C3 = 25 μg/ml) by well diffusion method against Gram negative Escherichia coli. The antibacterial performance was assessed by measuring the zone of inhibition (ZOI). Conclusions The results suggested that AgNPs prepared by green approach can be considered as an alternative antibacterial agent.
Plants are playing important role in the planet by providing food for humans and stability in the environment. Phytohormones are key regulators in various physiological processes and among the most important small signaling molecules affecting plant growth and yield production. These biochemical also initiate adaptive responses caused by external stimuli, such as biotic and abiotic stress. Generally, on the basis of physiology, plant hormones roughly fall into two classes. In class one, phytohormones fall which is responsible for plants growth-promoting activities, such as cell division, cell elongation, seed and fruit development, and pattern of differentiation. On the other hand, the second class of hormone play important role in plants’ response, such as biotic and abiotic stresses. Some other hormones, such as jasmonates, salicylic acid, brassinosteroids, and strigolactones, also play a key role in plants. Their biochemical signaling network and their crosstalk ability make plant hormones excellent candidates to optimize plant growth and/or mediate abiotic and biotic stresses in agriculture. In the end, the future trends of plant hormone analysis are exploring plant hormones and their applications. We believe the perspective may serve as guidance for the research of plant hormones in the analytical, environmental, and botanical fields.
Lactobacilli are the most common probiotics used in food and other industries because of their capability of producing bacteriocins. Bacteriocins are compounds that are used to kill pathogenic microorganisms. As most bacteria have become resistant to synthetic antibacterial tools, the importance of using probiotics as antibacterial agents has increased. This work was done to check the bacteriocin effect on some common pathogens and the influence of mutation on the bacteriocin activity of Lactobacilli was also investigated. Four strains were isolated, identified from meat and pickles samples via culturing methods, staining, biochemical tests, and ribotyping. Preliminary tests, including Gram staining and catalase test, were done for the confirmation of Lactobacillus species. All strains were gram-positive and catalase-negative. Antibacterial activity was checked against Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus thuringiensis, Escherichia coli, and Salmonella enteritis via agar well diffusion method. The mutations were done using ethidium bromide and the influence of wild and mutants were also checked. Interestingly, mutants developed more virulence than wild ones. It was also observed that they all were sensitive to pepsin. Protein estimation was done via Bradford method. Ribotyping of GCU-W-PS1 revealed 99 % homology with Lactobacillus plantarum and GCU-W-MS1 to Lactobacillus curvatus (99 % homology). Curvacin A, sakacin P, and plantaricin A genes were also amplified using specific primers. Gene sequence showed the presence of curvacin A gene in GCU-W-MS1. It was concluded that lactic acid bacteria could be used as antibacterial tools against common pathogens.
Background The therapeutic potential of Haloxylon griffithii found in northern region of Balochistan, so far has been neglected. Purpose The current study was aimed to assess the phytochemicals and pharmacological potential of fractions isolated from H griffithii. Research Design During phytochemicals analysis of H griffithii using GC/MS showed various bioactive compounds like alkaloids, flavonoids, terpenoids, tannins, saponins, and carboxylic acids. In vitro antioxidant activity of H griffithii was determined by 2, 2’- diphenyl-1-picrylhydrazyl (DPPH) assay. Disc diffusion method was used to evaluate the antimicrobial activity. Results The quantitative analysis of ethyl acetate showed highest total flavonoid contents (1.19 ± .05) while ethanol with lowest value (.52 ± .01). The total phenolic contents in ethyle acetate was 1.50 ± .42, whereas ethanol showed lowest value (.77 ± .02). Ethanol exhibited excellent (88.68 ± 3.0) free radical scavenging potential measured by 1,1-diphenyl-2-picryl-hydrazyl radical scavenging assay. For antimicrobial activity, different bacterial and fungal strains like B subtilis, S aureus, E coli, S typhi, C albicans, and A. niger were selected . The essential oil showed maximum % inhibition diameter (9 mm) against B. Subtillus and (5 mm) against C albicans, respectively . The ethyl acetate presented % inhibition diameter (9 mm) against S aureus and (6 mm) against A niger. Anti-urease activity also showed positive response. Conclusions The presence of high (%) bioactive compounds with great therapeutic potential suggest that H griffithii can be used as natural alternative of synthetic drugs without side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.