Complex composite materials are used in many areas of dentistry. Initially, chemically hardened materials were also used, and in this group nanohybrid composites are highly valued. They are often used today, mainly for the direct reconstruction of damaged hard tooth tissue materials for rebuilding damaged tissues using indirect adhesive techniques. The research was conducted to determine the mechanical properties of materials with nanofillers. The article focuses on methods of important test methods for dental prosthetics: resilience, abrasion, wear test, impact strength, hardness, SEM, and chemical analysis. As part of this work, five different series of hybrid composites with nano-fillers were tested. The mechanical properties of composites, such as compressive strength, microhardness, flexural strength, and modulus of elasticity, depend mainly on the type, particle size, and amount of filler introduced. The obtained test results showed that the type and amount of nanofiller have a significant influence on the mechanical and tribological properties. The introduction of nanofillers allowed us to obtain higher mechanical properties compared to classic materials discussed by other researchers. The study observed a change in vibrations in the IR spectrum, which allowed a comparison of the organic structures of the studied preparations.
The manufacturing of machine parts with additive methods (AM) is of significant importance in modern industry. The development of 3D printers and all 3D printing technology is impressive. The ability to make parts quickly and relatively cheaply with AM gives excellent opportunities in terms of e.g., shortening the production preparation time. Proper selection of printing parameters allows for a significant reduction of printing time and production costs. Unfortunately, this has different consequences. Due to the course of the printing process and the parameters that can be set, the same product produced with different parameters has different mechanical properties -mainly different strength. This paper presents the impact of 3D printing parameters on the strength of manufactured parts. Strength tests were carried out on samples made in accordance with DIN EN ISO 527-1:2019. The samples were printed in technology FDM from three different materials, i.e. PLA (completely biodegradable), PETG (recycled material) and Smart ABS (material with minimal shrinkage). The tested samples were made in three levels of print filling -10, 30 and 60% and with different types of filling -line, mesh and honeycomb. A series of static tensile tests were carried out to determine the strength of the samples produced with different printing parameters. Thanks to the obtained test results, it is possible to select the optimal printing parameters depending on the forecast load of the manufactured parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.