In this study, nanofibrous matrices of poly(L-lactic acid)-hydroxyapatite (PLLA-HAp) were successfully fabricated by three-dimensional (3D) electrospinning for use in the treatment of irregular bone damages. Compressibility analysis showed that 3D nanofibrous grafts occupied at least 2-fold more volume than their 2D form and they can easily take shape of the defect zone with irregular geometry. Moreover, the compression moduli of the PLLA and PLLA-HAp grafts were calculated as 8.0 ± 3.0 kPa and 11.8 ± 3.9 kPa, respectively, while the strain values of the same samples at the maximum load of 600 kPa were 164 ± 28% and 130 ± 20%, respectively. Treatment of the grafts with aqueous sodium hydroxide solution increased the surface roughness and thus the alloplastic graft materials (PLLA-HAp/M) protecting the fiber morphology were produced successfully. Then, platelet-rich plasma (PRP) was loaded into the surface modified grafts and activated with 10% calcium chloride. The efficiency of the activation was evaluated with flow cytometry and it was found that after activation the percentages of CD62 (P-selectin) and CD41/61 (glycoprotein IIb/IIIa) proteins increased approximately 4-fold. Surface hydrophilicity and biological activity of the PLLA-HAp grafts were enhanced by fibrin coating after PRP activation. The in vitro cell culture studies which were carried out by using mouse pre-osteoblasts (MC3T3-E1) showed that graft materials supported by PRP increased cellular proliferation and osteogenic differentiation significantly. The in vivo results demonstrated that compared with bare PLLA-HAp/M grafts, the PRP loaded grafts (PRP-PLLA-HAp/M) induced significantly greater bone formation based on computed tomography, histological and immunohistochemical analyses. Our findings suggest that 3D PLLA nanofibrous matrices can be used as a graft material for irregular bone defects especially when combined with PRP as an osteogenic induction agent.
Here, the authors report a case of Cantrell's syndrome which was diagnosed by ultrasound at 12 th week of pregnancy and confirmed by autopsy. Cantrell syndrome/pentalogy is defined as congenital combination of five main distinctive components: defects at the lower part of the sternum, anterior diaphragm, midline supraumbilical abdominal wall, diaphragmatic pericardium, and ectopia cordis. In the present case, in addition to these anomalies, there was cleft palate and cleft lip at the midline. Association of cleft lip and palate with Cantrell's syndrome may be due to the extension of defective migration of mesodermal primordial structures, which is mainly in abdomen and thorax, towards facial structures. Therefore, in prenatal diagnosis facial anomalies should be examined carefully in all cases with Cantrell syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.