From breathing to walking, rhythmic movements encompass physiological processes important across the entire animal kingdom. It is thought by many that the generation of rhythmic behavior is operated by a central pattern generator (CPG) and does not require peripheral sensory input. Sensory feedback is, however, required to modify or coordinate the motor activity in response to the circumstances of actual movement. In contrast to this notion, we report here that sensory input is necessary for the generation of Drosophila larval locomotion, a form of rhythmic behavior. Blockage of all peripheral sensory inputs resulted in cessation of larval crawling. By conditionally silencing various subsets of larval peripheral sensory neurons, we identified the multiple dendritic (MD) neurons as the neurons essential for the generation of rhythmic peristaltic locomotion. By recording the locomotive motor activities, we further demonstrate that removal of MD neuron input disrupted rhythmic motor firing pattern in a way that prolonged the stereotyped segmental motor firing duration and prevented the propagation of posterior to anterior segmental motor firing. These findings reveal that MD sensory neuron input is a necessary component in the neural circuitry that generates larval locomotion.rhythmic behavior ͉ sensory feedback ͉ locomotion generation ͉ motor pattern ͉ central pattern generator R hythmic behaviors comprise a cyclic, repetitive set of movements, such as locomotion, respiration, and mastication (1, 2). The prevailing model for the neural basis underlying rhythmic behavior is that all rhythmic movements are generated by specialized circuits within the CNS called central pattern generators (CPGs), which can operate without sensory inputs (3-5). Nevertheless, a functional motor program also requires sensory inputs reporting peripheral feedback due to the actual movements to produce the correct behavior (6, 7). This model draws support from reports of sensory feedback affecting the timing and magnitude of motor activity generated by CPGs and from studies based on surgical removal of afferent input (1, 4, 6, 7). Whereas there are electrophysiological demonstrations of the influence of sensory feedback on the output of CPGs, how interactions between sensory neurons in the peripheral and neurons in the CNS contribute to rhythmic behavior in an intact organism is not known. It is therefore important to ask whether sensory inputs are essential for rhythmic behavior and how sensory inputs contribute to rhythmic behavior.Drosophila is ideal for investigations of neural circuits underlying rhythmic behavior due to its amenability to genetic manipulation. Larval crawling, used for travel across various types of terrain, is accomplished by repeated peristaltic wave-like strides (8) and involves molecules mediating neuronal signaling (9-12). Whereas one study suggests that embryonic assembly of CPG for larval locomotion does not require sensory inputs, the same study reports that interference with the sensory function during embry...
We examined the necessity of alpha-gustducin, a G protein alpha-subunit expressed in taste cells, to taste-mediated licking responses of mice to sapid stimuli. To this end, we measured licking responses of alpha-gustducin knock-out (Gus-/-) mice and heterozygotic littermate controls (Gus+/-) to a variety of 'bitter', 'umami', 'sweet', 'salty' and 'sour' taste stimuli. All previous studies of how Gus-/- mice ingest taste stimuli have used long-term (i.e. 48 h) preference tests, which may be confounded by post-ingestive and/or experiential effects of the taste stimuli. We minimized these confounds by using a brief-access taste test, which quantifies immediate lick responses to extremely small volumes of sapid solutions. We found that deleting alpha-gustducin (i) dramatically reduced the aversiveness of a diverse range of 'bitter' taste stimuli; (ii) moderately decreased appetitive licking to low and intermediate concentrations of an 'umami' taste stimulus (monosodium glutamate in the presence of 100 microM amiloride), but virtually eliminated the normal aversion to high concentrations of the same taste stimulus; (iii) slightly decreased appetitive licking to 'sweet' taste stimuli; and (iv) modestly reduced the aversiveness of high, but not low or intermediate, concentrations of NaCl. There was no significant effect of deleting alpha-gustducin on licking responses to NH4Cl or HCl.
Recent studies have established that the T1R3 receptor plays a central role in the taste-mediated ingestive response to sweeteners by mice. First, transgenic mice lacking the gene for T1R3, Tas1r3, show dramatically reduced lick responsiveness to most sweeteners. Second, strains with the taster allele of Tas1r3 (T strains) are more sensitive to low sweetener concentrations than strains with the nontaster allele (NT strains) and consume greater quantities of low- to midrange concentrations of sweeteners during 24-h tests. We asked how Tas1r3 polymorphisms influence the initial licking responses of four T strains (FVB/NJ, SWR/J, SM/J, and C57BL/6J) and four NT strains (BALB/cJ, 129P3/J, DBA/2J, and C3H/HeJ) to two sweeteners (sucrose and SC-45647, an artificial sweetener). We used the initial licking response as a measure of the taste-mediated ingestive response because its brief duration minimizes the potential contribution of nontaste factors (e.g., negative and positive postingestive feedback). Further, we used two complimentary short-term intake tests (the brief-access taste test and a novel 1-min preference test) to reduce the possibility that our findings were an epiphenomenon of a specific testing procedure. In both tests, the T strains were more responsive than the NT strains to low concentrations of each sweetener. At higher concentrations, however, there was considerable overlap between the T and NT strains. In fact, the initial licking response of several NT strains was more vigorous than (or equivalent to) that of several T strains. There was also considerable variation among strains with the same Tas1r3 allele. We conclude that Tas1r3 polymorphisms contribute to strain differences in initial lick responsiveness to low but not high concentrations of sweeteners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.