Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is a member of orthopoxvirus genus. The reemergence of MPXV in 2017 (at Bayelsa state) after 39 years of no reported case in Nigeria, and the export of travelers’ monkeypox (MPX) from Nigeria to other parts of the world, in 2018 and 2019, respectively, have raised concern that MPXV may have emerged to occupy the ecological and immunological niche vacated by smallpox virus. This review X-rays the current state of knowledge pertaining the infection biology, epidemiology, and evolution of MPXV in Nigeria and worldwide, especially with regard to the human, cellular, and viral factors that modulate the virus transmission dynamics, infection, and its maintenance in nature. This paper also elucidates the role of recombination, gene loss and gene gain in MPXV evolution, chronicles the role of signaling in MPXV infection, and reviews the current therapeutic options available for the treatment and prevention of MPX. Additionally, genome-wide phylogenetic analysis was undertaken, and we show that MPXV isolates from recent 2017 outbreak in Nigeria were monophyletic with the isolate exported to Israel from Nigeria but do not share the most recent common ancestor with isolates obtained from earlier outbreaks, in 1971 and 1978, respectively. Finally, the review highlighted gaps in knowledge particularly the non-identification of a definitive reservoir host animal for MPXV and proposed future research endeavors to address the unresolved questions.
Aqueous extracts of the leaf of Harungana madagascariensis were analysed phytochemically and evaluated for antimicrobial activity against strains of Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa. Glycosides, tannins, saponins, flavonoids and alkaloids were detected in the plant material. B. subtilis, E. coli and S. typhi, but not Ps. aeruginosa, showed susceptibility at MICs of 2.0 and 15.6 mg/mL; and MBCs of 2.0-3.9 mg/mL and 15.6-31.3 mg/mL, respectively, for the cold and hot extracts. Staph. aureus showed susceptibility only to the hot extract. Concentrations of 2.5-10.0 mg/mL of the cold extract killed over 7 log(10) of the test bacterial population within 30-60 min of exposure. The hot extract needed higher concentrations and longer treatment to achieve similar levels of bacterial cell killing. The results provide a rationalization for the traditional use of H. madagascariensis leaf extracts for the treatment of gastrointestinal disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.