Debinding involves long and delicate processing periods of removing binder components from a green body after injection moulding; failure to completely remove the binder components results in distortion, cracking, blisters and contamination at elevated temperatures. This study focuses on optimising thermal debinding process parameters on the basis of obtaining a defect-free part after sintering and also determining a sintering time that gives high sintering density. Thermal debinding was conducted after solvent debinding. The feedstock used to produce green compacts composed of Ti6Al4V powder and a wax-based binder. The binder’s backbone component is a low density polyethylene (LDPE). Careful selection of thermal debinding parameters was guided by thermo-gravimetric analysis (TGA) results. The Taguchi method was used to determine an optimum debinding process. Thermally debound compacts were analysed for residual binder using a TGA. Archimedes’ principle and optical microscopy were done to analyse the sintering density and microstructure of the sintered product, respectively. Optimum debinding and sintering conditions were identified. The study demonstrated that heating rate during debinding was the most influential factor that contributes to minimum residual binder followed by debinding dwell time and temperature. Longer sintering time of 4 h favoured higher density of 91.6 ±1.55%. A typical radial shrinkage level of 11.1 ±0.0816% was determined.
Metallic biomedical implants such as titanium-based alloys are very useful for orthopaedic applications due to their excellent properties which responds to changes in temperature and other conditions. However, biological toxicity due to alloying elements and relatively high Young’s modulus or mechanical incompatibilities of previously used Ti alloys have necessitated the development of biocompatible alloys with compatible mechanical properties such as beta-titanium alloys. This study aims at production of beta-titanium alloy with enhanced properties by varying milling speeds. Ti and Nb powders were mechanically alloyed using the high energy ball-mill Zoz-Simoloyer® to produce Ti-7Nb alloys by varying the milling speed. The milling process produced irregular shaped powders with increasing particles sizes as the milling speed increased due to fragmentation and cold welding during agglomeration. The mechanical alloying process had good yield. The predominant phases of the inhomogeneously milled alloy were alpha and beta phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.