Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.
Nowadays, pharmaceutical heparin is purified from porcine and bovine intestinal mucosa. In the past decade there has been an ongoing concern about the safety of heparin, since in 2008, adverse effects associated with the presence of an oversulfated chondroitin sulfate (OSCS) were observed in preparations of pharmaceutical porcine heparin, which led to the death of patients, causing a global public health crisis. However, it has not been clarified whether OSCS has been added to the purified heparin preparation, or whether it has already been introduced during the production of the raw heparin. Using a combination of different analytical methods, we investigate both crude and final heparin products and we are able to demonstrate that the sulfated contaminants are intentionally introduced in the initial steps of heparin preparation. Furthermore, the results show that the oversulfated compounds are not structurally homogeneous. In addition, we show that these contaminants are able to bind to cells in using well known heparin binding sites. Together, the data highlights the importance of heparin quality control even at the initial stages of its production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.