Coordinated online behaviors are an essential part of information and influence operations, as they allow a more effective disinformation's spread. Most studies on coordinated behaviors involved manual investigations, and the few existing computational approaches make bold assumptions or oversimplify the problem to make it tractable.
Here, we propose a new network-based framework for uncovering and studying coordinated behaviors on social media. Our research extends existing systems and goes beyond limiting binary classifications of coordinated and uncoordinated behaviors. It allows to expose different coordination patterns and to estimate the degree of coordination that characterizes diverse communities. We apply our framework to a dataset collected during the 2019 UK General Election, detecting and characterizing coordinated communities that participated in the electoral debate. Our work conveys both theoretical and practical implications and provides more nuanced and fine-grained results for studying online information manipulation.
Natural disasters, as well as human-made disasters, can have a deep impact on wide geographic areas, and emergency responders can benefit from the early estimation of emergency consequences. This work presents CrisMap, a Big Data crisis mapping system capable of quickly collecting and analyzing social media data. CrisMap extracts potential crisis-related actionable information from tweets by adopting a classification technique based on word embeddings and by exploiting a combination of readily-available semantic annotators to geoparse tweets. The enriched tweets are then visualized in customizable, Web-based dashboards, also leveraging ad-hoc quantitative visualizations like choropleth maps. The maps produced by our system help to estimate the impact of the emergency in its early phases, to identify areas that have been severely struck, and to acquire a greater situational awareness. We extensively benchmark the performance of our system on two Italian natural disasters by validating our maps against authoritative data. Finally, we perform a qualitative case-study on a recent devastating earthquake occurred in Central Italy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.