FKBP ligand homodimers can be used to activate signaling events inside cells and animals that have been engineered to express fusions between appropriate signaling domains and FKBP. However, use of these dimerizers in vivo is potentially limited by ligand binding to endogenous FKBP. We have designed ligands that bind specifically to a mutated FKBP over the wild-type protein by remodeling an FKBP-ligand interface to introduce a specificity binding pocket. A compound bearing an ethyl substituent in place of a carbonyl group exhibited sub-nanomolar affinity and 1,000-fold selectivity for a mutant FKBP with a compensating truncation of a phenylalanine residue. Structural and functional analysis of the new pocket showed that recognition is surprisingly relaxed, with the modified ligand only partially filling the engineered cavity. We incorporated the specificity pocket into a fusion protein containing FKBP and the intracellular domain of the Fas receptor. Cells expressing this modified chimeric protein potently underwent apoptosis in response to AP1903, a homodimer of the modified ligand, both in culture and when implanted into mice. Remodeled dimerizers such as AP1903 are ideal reagents for controlling the activities of cells that have been modified by gene therapy procedures, without interference from endogenous FKBP.
The crystal structure of the tandem SH2 domains of human ZAP-70 in complex with a peptide derived from the zeta-subunit of the T-cell receptor reveals an unanticipated interaction between the two domains. A coiled coil of alpha-helices connects the two SH2 domains, producing an interface that constitutes one of the two critical phosphotyrosine binding sites. These and other unique features provide the molecular basis for highly selective association of ZAP-70 with the T-cell receptor.
Chemically induced dimerization provides a general way to gain control over intracellular processes. Typically, FK506-binding protein (FKBP) domains are fused to a signaling domain of interest, allowing crosslinking to be initiated by addition of a bivalent FKBP ligand. In the course of protein engineering studies on human FKBP, we discovered that a single point mutation in the ligandbinding site (Phe-36 3 Met) converts the normally monomeric protein into a ligand-reversible dimer. Two-hybrid, gel filtration, analytical ultracentrifugation, and x-ray crystallographic studies show that the mutant (FM) forms discrete homodimers with micromolar affinity that can be completely dissociated within minutes by addition of monomeric synthetic ligands. These unexpected properties form the basis for a ''reverse dimerization'' regulatory system involving F M fusion proteins, in which association is the ground state and addition of ligand abolishes interactions. We have used this strategy to rapidly and reversibly aggregate fusion proteins in different cellular compartments, and to provide an off switch for transcription. Reiterated FM domains should be generally useful as conditional aggregation domains (CADs) to control intracellular events where rapid, reversible dissolution of interactions is required. Our results also suggest that dimerization is a latent property of the FKBP fold: the crystal structure reveals a remarkably complementary interaction between the monomer binding sites, with only subtle changes in side-chain disposition accounting for the dramatic change in quaternary structure.
Background: Cytokines and growth factors are soluble proteins that regulate the development and activities of many cell types. One group of these proteins have structures based on a four-helix bundle, though this similarity is not apparent from amino acid sequence comparisons. An understanding of how diverse sequences can adopt the same fold would be useful for recognizing and aligning distant homologs and for applying structural information gained from one protein to other sequences. Results: We have approached this problem by comparing the five known structures which adopt a granulocytemacrophage colony-stimulating factor (GM-CSF)-like, or short-chain fold: interleukin (IL)-4, GM-CSF, IL-2, IL-5, and macrophage colony-stimulating factor. The comparison reveals a common structural framework of five segments including 31 inner-core and 30 largely exposed residues. Buried polar interactions found in each protein illustrate how complementary substitutions maintain protein stability and may help specify unique core packing. A profile based on the known structures is not sufficient to guarantee accurate amino acid sequence alignments with other family members. Comparisons of the conserved short-chain framework with growth hormone define the optimal structural alignment. Conclusions: Our results are useful for extrapolating functional results among the short-chain cytokines and growth hormone, and provide a foundation for similar characterization of other subfamilies. These results also show that the placement of polar residues at different buried positions in each protein complicates sequence comparisons, and they document a challenging test case for methods aimed at recognizing and aligning distant homologs. 1994, 2:159-173 Structure 15 March
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.