Biomass is one of the most promising renewable energy sources because it enables energy accumulation and controlled production. With this, however, the demand for biofuels grows and thus there is an effort to expand their portfolio. Nevertheless, to use a broader range of biofuels, it is necessary to know their fuel properties, such as coarse and elemental analysis, or lower heating value. This paper presents the results of testing the fuel properties of several new, potentially usable biofuels, such as quinoa, camelina, crambe, and safflower, which are compared with some traditional biofuels (wood, straw, sorrel, hay). Moreover, the results of the determination of water content, ash, and volatile combustible content of these fuels are included, along with the results of the elemental analysis and the determination of higher and lower heating values. Based on these properties, it is possible to implement designs of combustion plants of different outputs for these fuels.
The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar) in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate) from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/m<sub>n</sub><sup>3</sup>. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.
emphasis is given to accurate prediction of their properties, especially strength. There are several options for predicting pin connections, such as analytical calculations, Special-Purpose Programs (SPPs), or Finite Element Analysis (FEA). Nowadays companies do not usually have all these prediction methods available. The main reason is price and the maintenance of the software. In particular, smaller companies are usually equipped with SPPs [
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.