IntDOT is a tyrosine recombinase encoded by the conjugative transposon CTnDOT. The core binding (CB) and catalytic (CAT) domains of IntDOT interact with core-type sites adjacent to the regions of strand exchange, while the N-terminal arm binding (N) domain interacts with arm-type sites distal to the core. Previous footprinting experiments identified five arm-type sites, but how the arm-type sites participate in the integration and excision of CTnDOT was not known. In vitro integration assays with substrates containing arm-type site mutants demonstrated that attDOT sequences containing mutations in the L1 arm-type site or in the R1 and R2 or R1 and R2 arm-type sites were dramatically defective in integration. Substrates containing mutations in the L1 and R1 arm-type sites showed a 10-to 20-fold decrease in detectable in vitro excision, but introduction of multiple arm-type site mutations in attR did not have an effect on the excision frequency. A sixth arm-type site, the R1 site, was also identified and shown to be required for integration and important for efficient excision. These results suggest that intramolecular IntDOT interactions are required for integration, while the actions of accessory factors are more important for excision. Gel shift assays performed in the presence of core-and arm-type site DNAs showed that IntDOT affinity for the attDOT core was enhanced when IntDOT was simultaneously bound to arm-type site DNA.Conjugative transposons (CTns), also known as integrative and conjugative elements (ICEs), are mobile genetic elements that are widespread in Bacteroides spp. and are implicated in the spread of antibiotic resistance. These elements are normally integrated into the host chromosome but can excise, replicate, and transfer to a recipient cell by conjugation (34). Since CTns commonly carry antibiotic resistance genes, it is likely that the increase in antibiotic-resistant Bacteroides strains has been mediated through the lateral transfer of these elements (36). One of the best-studied ICEs in Bacteroides is the conjugative transposon CTnDOT. CTnDOT is 65 kb in size and carries genes encoding resistance to tetracycline and erythromycin. Over the past 30 years, the incidence of tetracycline resistance has increased to 80% of Bacteroides isolates due to the presence of CTnDOT-type elements (36).Integration and excision of CTnDOT results from site-specific recombination between regions of DNA known as attachment (att) sites. During integration, the joined ends of the closed circular intermediate (attDOT) recombine with the bacterial target sequence (attB) to form the recombinant sites (attL and attR). The integration reaction requires IntDOT, a CTnDOT-encoded protein that has been identified as a member of the tyrosine recombinase family, as well as a host factor encoded by Bacteroides (8, 21). Site-specific recombination between the attL and attR attachment sites results in excision of CTnDOT from the host chromosome. IntDOT is also required for excision, as are three element-encoded proteins: Orf...
Bacteroides species are one of the most prevalent groups of bacteria present in the human colon. Many strains carry large, integrated elements including integrative and conjugative elements (ICEs). One such ICE is CTnDOT, which is 65 kb in size and encodes resistances to tetracycline and erythromycin. CTnDOT has been increasing in prevalence in Bacteroides spp., and is now found in greater than 80% of natural isolates. In recent years, CTnDOT has been implicated in the spread of antibiotic resistance among gut microbiota. Interestingly, the excision and transfer of CTnDOT is stimulated in the presence of tetracycline. The tyrosine recombinase IntDOT catalyzes the integration and excision reactions of CTnDOT. Unlike the well-characterized lambda Int, IntDOT tolerates heterology in the overlap region between the sites of cleavage and strand exchange. IntDOT also appears to have a different arrangement of active site catalytic residues. It is missing one of the arginine residues that is conserved in other tyrosine recombinases. The excision reaction of CTnDOT is complex, involving excision proteins Xis2c, Xis2d, and Exc, as well as IntDOT and a Bacteroides host factor. Xis2c and Xis2d are small, basic proteins like other recombination directionality factors (RDFs). Exc is a topoisomerase; however, the topoisomerase function is not required for the excision reaction. Exc has been shown to stimulate excision frequencies when there are mismatches in the overlap regions, suggesting that it may play a role in resolving Holliday junctions containing heterology. Work is currently under way to elucidate the complex interactions involved with the formation of the CTnDOT excisive intasomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.