We present a simple two-stage vapour-solid synthesis method for the growth of bismuth chalcogenide (Bi2Te3, Bi2Se3) topological insulator nanowires/nanobelts by using Bi2Se3 or Bi2Te3 powders as source materials. During the first stage of the synthesis process nanoplateteles, serving as "catalysts" for further nanowire/nanobelt growth, are formed. At a second stage of the synthesis, the introduction of a N2 flow at 35 Torr pressure in the chamber induces the formation of free standing nanowires/nanobelts. The synthesised nanostructures demonstrate a layered single-crystalline structure and Bi : Se and Bi : Te ratios 40 : 60 at% for both Bi2Se3 and Bi2Te3 nanowires/nanobelts. The presence of Shubnikov de Haas oscillations in the longitudinal magneto-resistance of the nanowires/nanobelts and their specific angular dependence confirms the existence of 2D topological surface states in the synthesised nanostructures.
Zinc Oxide (ZnO) and graphene (G) have been extensively studied because of their unique physical properties. Here, Graphene-Zinc Oxide (G/ZnO) nanolaminates were fabricated, respectively, by chemical vapor deposition and low temperature atomic layer deposition technique. The number of obtained G/ZnO layers was tuned from 1 to 11 with a total thickness of 100 nm for all prepared nanolaminates. The structure, optical properties and interaction between G and ZnO were studied by X-ray methods, TEM, AFM, Raman and optical spectroscopy. The obtained results were interpreted and analysed taking into account strain and charge effects of graphene in G/ZnO nanostructures. We demonstrate that the bottom graphene used as a substrate stimulated the formation of ZnO crystalline structure. n-doping of graphene caused by charge transfer from ZnO to graphene has been detected by blue-shift of G-band of Raman spectra of the nanolaminates. ZnO photoluminescence intensity was found to be dependent on the number of graphene layers in G/ZnO nanolaminate. n-doping of graphene could be tailored by controlling the construction of the G/ZnO nanolaminates for variety of applications such as, for example, selective adsorption of the target molecules on graphene surface. Thus, G/ZnO nanolaminates may find applications in optical, bio-and chemical sensors.
In this work, stoichiometric separate bismuth selenide (Bi 2 Se 3 ) nanoplates and continuous Bi 2 Se 3 coatings are synthesized on graphene substrate by catalystfree vapor-solid deposition method. The orientation of synthesized nanoplates relative to the substrate surface varies from heteroepitaxial (planar) to oriented under different angles (non-planar). The non-planar growth of the nanoplates was achieved for the first time by short-term carrier inert gas flow in certain temperature interval of the synthesis process. The crystallographic growth directions of non-planar nanoplates were determined from HRTEM images as well as estimated from the slope angles of non-planar nanoplates. Bi 2 Se 3 coatings consisting of combination of planar and non-planar nanoplates exhibit significantly enhanced in comparison with coating consisting of only planar coalescent Bi 2 Se 3 nanoplates thermoelectric properties. Demonstrated graphene/Bi 2 Se 3 /graphene devices may find applications in thermoelectric and photo-detection sensors.
Knowledge of nucleation and further growth of Bi2Se3 nanoplates on different substrates is crucial for obtaining ultrathin nanostructures and films of this material by physical vapour deposition technique. In this work, Bi2Se3 nanoplates were deposited under the same experimental conditions on different types of graphene substrates (as-transferred and post-annealed chemical vapour deposition grown monolayer graphene, monolayer graphene grown on silicon carbide substrate). Dimensions of the nanoplates deposited on graphene substrates were compared with the dimensions of the nanoplates deposited on mechanically exfoliated mica and highly ordered pyrolytic graphite flakes used as reference substrates. The influence of different graphene substrates on nucleation and further lateral and vertical growth of the Bi2Se3 nanoplates is analysed. Possibility to obtain ultrathin Bi2Se3 thin films on these substrates is evaluated. Between the substrates considered in this work, graphene grown on silicon carbide is found to be the most promising substrate for obtaining of 1–5 nm thick Bi2Se3 films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.