Sensory and social deprivation from the mother and littermates during early life disturbs the development of the central nervous system, but little is known about its effect on the development of the peripheral nervous system. To assess peripheral effects of early isolation, male rat pups were reared artificially in complete social isolation (AR); reared artificially with two same-age conspecifics (AR-Social); or reared by their mothers and with littermates (MR). As adults, the electrophysiological properties of the sensory sural (SU) nerve were recorded. We found that the amplitude and normalized area (with respect to body weight) of the compound action potential (CAP) response provoked by single electrical pulses of graded intensity in the SU nerves of AR animals were shorter than the CAP recorded in SU nerves from MR and AR-Social animals. The slope of the stimulus-response curve of AR SU nerves was smaller than that of the other nerves. The histological characterization of axons in the SU nerves was made and showed that the myelin thickness of axons in AR SU nerves was significant lower (2-7µm) than that of the axons in the other nerves. Furthermore, the area and axon diameter of SU nerves of both AR and AR-Social animals were significant lower than in MR animals. This is the first report to show that maternal and littermate deprivation by AR disturbs the development of the myelination and electrophysiological properties of axons in the SU nerve; the replacement of social cues prevents most of the effects.
Epidermal growth factor (EGF) induces changes in cell morphology, actin cytoskeleton, and adhesion processes in cultured infantile pituitary cells. The extracellular matrix, through integrin engagement, collaborates with growth factors in cell signaling. We have examined the participation of collagen I/III and collagen plus fibronectin in the EGF response of infantile pituitary cells with respect to their cell morphology and actin cytoskeleton. As a comparison, we have used poly-lysine as a substrate. Infantile cells elicit the EGF response when they are associated with extracellular matrix proteins, but no response can be obtained with poly-lysine as the substrate. Cells acquire a flattened shape and organize their actin filaments and vinculin as in focal adhesions. Because the EGF receptor (EGFR) is linked to the actin cytoskeleton in other cells structuring a microdomain in cell signaling, we have investigated this association and substrate adhesion participation in infantile pituitary cells. The proportion of EGFR associated with the actin cytoskeleton is approximately 31%; no difference has been observed between the substrates used. Cells in suspension show actin-associated EGFR, suggesting an association independent of cell adhesion. However, no colocalization of EGFRs with actin fibers has been observed, suggesting an indirect association. Compared with beta(1)-integrin, which is linked to actin fibers through structural proteins, EGFR binds more strongly with the actin cytoskeleton. This study thus shows cell adhesion dependence on the EGF effect in the actin cytoskeleton arrangement; this is probably favored by the actin fiber/EGFR association that facilitates the cell signaling pathways for actin cytoskeleton organization in infantile pituitary cells.
During early postnatal development in the rat, the tissue architecture of the pituitary gland shows changes, revealing an intense migration process of the cells. The aim of this work was to examine anterior pituitary cell migration over type I and III collagen as well as type IV collagen, of cultured pituitary cells from infantile rats and adult rats, and the participation of the epidermal growth factor in this process. Differences in cell migration rate over these two types of collagen substrates were observed at both ages, and all in all, three times more cells migrated over type I/III collagen than over type IV collagen. These data show the migration-promoting role of type I/III collagen for pituitary cells. Furthermore, when infantile cells were challenged to migrate over bovine serum albumin, the migration rate diminished, and, on the contrary, adult cell migration was higher. However, over collagen, infantile cells increased their migration rate with epidermal growth factor stimulation and adult cells showed a decrease in migration when the growth factor was in the medium. During migration, pituitary cells associated and arranged in clusters. This behavior increased in the presence of epidermal growth factor in the infantile cultures. Moreover, epidermal growth-factor-stimulated infantile cells formed larger aggregates. Adult cells also showed associative behavior, but more cells were observed isolated than in cluster arrangements and the growth factor did not induce changes in this behavior. Results showed a difference in the response of cell migration and cell association capacity to epidermal growth factor after migration of infantile and adult pituitary cells. With these observations we propose that epidermal growth factor is a cell regulator of the pituitary tissue re-arrangement process during the infantile period.
Neuroendocrine cells are present in virtually all organs of the vertebrate body; however, it is yet uncertain whether they exist in the ovaries. Previous reports of ovarian neurons and neuron-like cells in mammals and birds might have resulted from misidentification. The aim of the present work was to determine the identity of neuron-like cells in immature ovaries of the domestic fowl. Cells immunoreactive to neurofilaments, synaptophysin, and chromogranin-A, with small, dense-core secretory granules, were consistently observed throughout the sub-cortical ovarian medulla and cortical interfollicular stroma. These cells also displayed immunoreactivity for tyrosine, tryptophan and dopamine b-hydroxylases, as well as to aromatic L-DOPA decarboxylase, implying their ability to synthesize both catecholamines and indolamines. Our results support the argument that the ovarian cells previously reported as neuron-like in birds, are neuroendocrine cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.