The evolution of multipurpose sensors over the last decades has been investigated with the aim of developing innovative devices with applications in several fields of technology, including in the food industry. The integration of such sensors in food packaging technology has paved the way for intelligent food packaging. These integrated systems are capable of providing reliable information about the quality of the packed products during their storage period. To accomplish this goal, intelligent packs use a variety of sensors suited for monitoring the quality and safety of food products by recording the evolution of parameters like the quantity of pathogen agents, gases, temperature, humidity and storage period. This technology, when combined with IoT, is able to provide a lot more information than conventional food inspection technologies, which are limited to weight, volume, color and aspect inspection. The original system described in this work relies on a simple but effective method of integrated food monitoring, right at the client home, suitable for user prepared vacuum-packed foods. It builds upon the IoT concept and is able to create a network of interconnected devices. By using this approach, we are able to combine actuators and sensing devices also providing a common operating picture (COP) by sharing information over the platforms. More precisely, our system consists of gas, temperature and humidity sensors, which provide the essential information needed for evaluating the quality of the packed product. This information is transmitted wirelessly to a computer system providing an interface where the user can observe the evolution of the product quality over time.
Abstract:The present paper focuses on various aspects regarding Hall Effect sensors' design, integration, and behavior analysis. In order to assess their performance, different Hall Effect geometries were tested for Hall voltage, sensitivity, offset, and temperature drift. The residual offset was measured both with an automated measurement setup and by manual switching of the individual phases. To predict Hall sensors performance prior to integration, three-dimensional physical simulations were performed.
Five different Hall Effect sensors were modeled and their performance evaluated using a three dimensional simulator. The physical structure of the implemented sensors reproduces a certain technological fabrication process. Hall voltage, absolute, current-related, voltage-related and power-related sensitivities were obtained for each sensor. The effect of artificial offset was also investigated for cross-like structures. The simulation procedure guides the designer in choosing the Hall cell optimum shape, dimensions and device polarization conditions that would allow the highest performance.
Supramolecular hydrogels based on chitosan and monoaldehydes are biomaterials with high potential for a multitude of bioapplications. This is due to the proper choice of the monoaldehyde that can tune the hydrogel properties for specific practices. In this conceptual framework, the present paper deals with the investigation of a hydrogel as bioabsorbable wound dressing. To this aim, chitosan was cross-linked with 2-formylphenylboronic acid to yield a hydrogel with antimicrobial activity. FTIR, NMR, and POM procedures have characterized the hydrogel from a structural and supramolecular point of view. At the same time, its biocompatibility and antimicrobial properties were also determined in vitro. Furthermore, in order to assess the bioabsorbable character, its biodegradation was investigated in vitro in the presence of lysosome in media of different pH, mimicking the wound exudate at different stages of healing. The biodegradation was monitored by gravimetrical measurements, SEM microscopy and fractal analyses of the images. The fractal dimension values and the lacunarity of SEM pictures were accurately calculated. All these successful investigations led to the conclusion that the tested materials are at the expected high standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.