A significant proportion of patients with MM carry germline mutations in cancer susceptibility genes, especially those with peritoneal MM, minimal asbestos exposure, young age, and a second cancer diagnosis. These data support clinical germline genetic testing for patients with MM and provide a rationale for additional investigation of the homologous recombination pathway in MM.
Reports of individuals with deletions of 1q24→q25 share common features of prenatal onset growth deficiency, microcephaly, small hands and feet, dysmorphic face and severe cognitive deficits. We report nine individuals with 1q24q25 deletions, who show distinctive features of a clinically recognizable 1q24q25 microdeletion syndrome: prenatal-onset microcephaly and proportionate growth deficiency, severe cognitive disability, small hands and feet with distinctive brachydactyly, single transverse palmar flexion creases, fifth finger clinodactyly and distinctive facial features: upper eyelid fullness, small ears, short nose with bulbous nasal tip, tented upper lip, and micrognathia. Radiographs demonstrate disharmonic osseous maturation with markedly delayed bone age. Occasional features include cleft lip and/or palate, cryptorchidism, brain and spinal cord defects, and seizures. Using oligonucleotide-based array comparative genomic hybridization, we defined the critical deletion region as 1.9 Mb at 1q24.3q25.1 (chr1: 170135865–172099327, hg18 coordinates), containing 13 genes and including CENPL, which encodes centromeric protein L, a protein essential for proper kinetochore function and mitotic progression. The growth deficiency in this syndrome is similar to what is seen in other types of primordial short stature with microcephaly, such as Majewski osteodysplastic primordial dwarfism, type II (MOPD2) and Seckel syndrome, which result from loss-of-function mutations in genes coding for centrosomal proteins. DNM3 is also in the deleted region and expressed in the brain, where it participates in the Shank-Homer complex and increases synaptic strength. Therefore, DNM3 is a candidate for the cognitive disability, and CENPL is a candidate for growth deficiency in this 1q24q25 microdeletion syndrome.
Colony-stimulating factor 3 receptor (CSF3R) encodes the receptor for granulocyte colony-stimulating factor (G-CSF), a cytokine vital for granulocyte proliferation and differentiation. Acquired activating heterozygous variants in CSF3R are the main cause of chronic neutrophilic leukemia, a hyperproliferative disorder. In contrast, biallelic germ line hypomorphic variants in CSF3R are a rare cause of severe congenital neutropenia, a hypoproliferative condition. The impact of heterozygous germ line CSF3R variants, however, is unknown. We identified CSF3R as a new germ line hematologic malignancy predisposition gene through analysis of 832 next-generation sequencing tests conducted in 632 patients with hematologic malignancies. Among germ line CSF3R variants, 3 were abnormal in functional testing, indicating their deleterious nature. p.Trp547* was identified in 2 unrelated men with myelodysplastic syndromes diagnosed at 76 and 33 years of age, respectively. p.Trp547* is a loss-of-function nonsense variant in the extracellular domain that results in decreased CSF3R messenger RNA expression and abrogation of CSF3R surface expression and proliferative responses to G-CSF. p.Ala119Thr is a missense variant found in 2 patients with multiple myeloma and acute lymphoblastic leukemia, respectively. This variant is located between the extracellular immunoglobulin-like and cytokine receptor homology domains and results in decreased G-CSF sensitivity. p.Pro784Thr was identified in a 67-year-old man with multiple myeloma. p.Pro784Thr is a missense variant in the cytoplasmic domain that inhibits CSF3R internalization, producing a gain-of-function phenotype and G-CSF hypersensitivity. Our findings identify germ line heterozygous CSF3R variants as risk factors for development of myeloid and lymphoid malignancies.
The genes MECP2, CDKL5, FOXG1, UBE3A, SLC9A6, and TCF4 present unique challenges for current ACMG/AMP variant interpretation guidelines. To address those challenges, the Rett and Angelman‐like Disorders Variant Curation Expert Panel (Rett/AS VCEP) drafted gene‐specific modifications. A pilot study was conducted to test the clarity and accuracy of using the customized variant interpretation criteria. Multiple curators obtained the same interpretation for 78 out of the 87 variants (~90%), indicating appropriate usage of the modified guidelines the majority of times by all the curators. The classification of 13 variants changed using these criteria specifications compared to when the variants were originally curated and as present in ClinVar. Many of these changes were due to internal data shared from laboratory members however some changes were because of changes in strength of criteria. There were no two‐step classification changes and only 1 clinically relevant change (Likely pathogenic to VUS). The Rett/AS VCEP hopes that these gene‐specific variant curation rules and the assertions provided help clinicians, clinical laboratories, and others interpret variants in these genes but also other fully penetrant, early‐onset genes associated with rare disorders.
The aim of the current study was to determine the prevalence and clinical predictors of germline cancer susceptibility mutations in patients with malignant mesothelioma (MM). MethodsWe performed targeted capture and next-generation sequencing of 85 cancer susceptibility genes on germline DNA from 198 patients with pleural, peritoneal, and tunica vaginalis MM. ResultsTwenty-four germline mutations were identified in 13 genes in 23 (12%) of 198 patients. BAP1 mutations were the most common (n = 6; 25%). The remaining were in genes involved in DNA damage sensing and repair (n = 14), oxygen sensing (n = 2), endosome trafficking (n = 1), and cell growth (n = 1). Pleural site (odds ratio [OR], 0.23; 95% CI, 0.10 to 0.58; P , .01), asbestos exposure (OR, 0.28; 95% CI, 0.11 to 0.72; P , .01), and older age (OR, 0.95; 95% CI, 0.92 to 0.99; P = .01) were associated with decreased odds of carrying a germline mutation, whereas having a second cancer diagnosis (OR, 3.33; 95% CI, 1.22 to 9.07; P = .02) significantly increased the odds. The odds of carrying a mutation in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.