Aim An understanding of the non‐breeding distribution and ecology of migratory species is necessary for successful conservation. Many seabirds spend the non‐breeding season far from land, and information on their distribution during this time is very limited. The black‐legged kittiwake, Rissa tridactyla, is a widespread and numerous seabird in the North Atlantic and Pacific, but breeding populations throughout the Atlantic range have declined recently. To help understand the reasons for the declines, we tracked adults from colonies throughout the Atlantic range over the non‐breeding season using light‐based geolocation. Location North Atlantic. Methods Geolocation data loggers were deployed on breeding kittiwakes from 19 colonies in 2008 and 2009 and retrieved in 2009 and 2010. Data from 236 loggers were processed and plotted using GIS. Size and composition of wintering populations were estimated using information on breeding population size. Results Most tracked birds spent the winter in the West Atlantic, between Newfoundland and the Mid‐Atlantic Ridge, including in offshore, deep‐water areas. Some birds (mainly local breeders) wintered in the North Sea and west of the British Isles. There was a large overlap in winter distributions of birds from different colonies, and colonies closer to each other showed larger overlap. We estimated that 80% of the 4.5 million adult kittiwakes in the Atlantic wintered west of the Mid‐Atlantic Ridge, with only birds from Ireland and western Britain staying mainly on the European side. Main conclusions The high degree of mixing in winter of kittiwakes breeding in various parts of the Atlantic range implies that the overall population could be sensitive to potentially deteriorating environmental conditions in the West Atlantic, e.g. owing to lack of food or pollution. Our approach to estimating the size and composition of wintering populations should contribute to improved management of birds faced with such challenges.
Relationships between events in one period of the annual cycle and behaviour in subsequent seasons are key determinants of individual life histories and population dynamics. However, studying such associations is challenging, given the difficulties in following individuals across seasons, particularly in migratory species. Relationships between breeding performance and subsequent winter ecology are particularly poorly understood, yet are likely to be profoundly important because of the costs of reproduction. Using geolocation technology, we show that black-legged kittiwakes that experienced breeding failure left their colony in southeast Scotland earlier than successful breeders. Moreover, a greater proportion of unsuccessful breeders (94% versus 53% successful) travelled over 3000 km to the West Atlantic, whereas fewer visited the East Atlantic (31% versus 80% successful), less than 1000 km from the colony. The two groups did not differ in the timing of return to the colony the following spring. However, 58 per cent of males made a previously undescribed long-distance pre-breeding movement to the central Atlantic. Our results demonstrate important links between reproductive performance and winter distribution, with significant implications for population dynamics. Furthermore, macro-scale segregation associated with breeding outcome is relevant to defining important wintering areas, in particular among declining species experiencing increasingly regular breeding failure.
Summary 1.Understanding the degree to which reproductive success varies with an individual's age and lifespan, and the degree to which population-level variation mirrors individual-level variation, is central to understanding life-history evolution and the dynamics of age-structured populations. We quantified variation in the survival probability of offspring, one key component of reproductive success and fitness, in relation to parent age and lifespan in a wild population of red-billed choughs (Pyrrhocorax pyrrhocorax). 2. On average across the study population, the first-year survival probability of offspring decreased with increasing parent age and lifespan; offspring of old parents were less likely to survive than offspring of young parents, and offspring of long-lived parents were less likely to survive than offspring of short-lived parents. 3. However, survival did not vary with parent age across offspring produced by groups of parents that ultimately had similar lifespans. 4. Rather, across offspring produced by young parents, offspring survival decreased with increasing parent lifespan; parents that ultimately had long lifespans produced offspring that survived poorly, even when these parents were breeding at young ages. 5. The average decrease in offspring survival with increasing parent age observed across the population therefore reflected the gradual disappearance of short-lived parents that produced offspring that survived well, not age-specific variation in offspring survival within individual parents. 6. The negative correlation between offspring survival and maternal lifespan was strongest when environmental conditions meant that offspring survival was low across the population. 7. These data suggest an environment-dependent trade-off between parent and offspring survival, show consistent individual variation in the resolution of this trade-off that is set early in a parent's life, and demonstrate that such structured life-history variation can generate spurious evidence of senescence in key fitness components when measured across a population.
Summary 1.Quantifying the pattern of temporal and spatial variation in demography, and identifying the factors that cause this variation, are essential steps towards understanding the structure and dynamics of any population. 2. One critical but understudied demographic rate is pre-breeding survival. We used long-term colour-ringing data to quantify temporal (among-year) and spatial (among-nest site) variation in pre-breeding survival in red-billed choughs ( Pyrrhocorax pyrrhocorax ) inhabiting Islay, Scotland, and identified environmental correlates of this variation. 3. Random-effects capture-mark-recapture models demonstrated substantial temporal and spatial process variance in first-year survival; survival from fledging to age 1 year varied markedly among choughs fledged in different years and fledged from different nest sites. Spatial variance exceeded temporal variance across choughs fledged from well-studied nest sites. 4. The best-supported models of temporal variation suggested that first-year survival was higher in years following high tipulid larvae abundance and when weather conditions favoured increased invertebrate productivity and/or availability to foraging choughs. These variables explained up to 80% of estimated temporal process variance. 5. The best-supported models of spatial variation suggested that first-year survival was higher in choughs fledged from nest sites that were further from exposed coasts and closer to flocking areas, and surrounded by better habitat and higher chough density. These variables explained up to 40% of estimated spatial process variance. 6. Importantly, spatio-temporal models indicated interactive effects of weather, tipulid abundance, local habitat and local chough density on first-year survival, suggesting that detrimental effects of poor weather and low tipulid abundance may be reduced in choughs fledged from nest sites surrounded by better foraging habitat and lower chough density. 7. These analyses demonstrate substantial temporal and small-scale spatial variation in pre-breeding survival, a key demographic rate, and indicate that this variation may reflect interactive effects of weather, prey abundance, habitat and geography. These patterns illustrate the value of holistic models of demographic variation, and indicate environmental factors that may limit the growth rate of Islay's protected chough population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.