The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally
Circulation patterns in the North Atlantic Ocean have changed and reorganized multiple times over millions of years, influencing the biodiversity, distribution, and connectivity patterns of deep-sea species and ecosystems. In this study, we review the effects of the water mass properties (temperature, salinity, food supply, carbonate chemistry, and oxygen) on deep-sea benthic megafauna (from species to community level) and discussed in future scenarios of climate change. We focus on the key oceanic controls on deep-sea megafauna biodiversity and biogeography patterns. We place particular attention on cold-water corals and sponges, as these are ecosystem-engineering organisms that constitute vulnerable marine ecosystems (VME) with high associated biodiversity. Besides documenting the current state of the knowledge on this topic, a future scenario for water mass properties in the deep North Atlantic basin was predicted. The pace and severity of climate change in the deep-sea will vary across regions. However, predicted water mass properties showed that all regions in the North Atlantic will be exposed to multiple stressors by 2100, experiencing at least one critical change in water temperature (+2 • C), organic carbon fluxes (reduced up to 50%), ocean acidification (pH reduced up to 0.3), aragonite saturation horizon (shoaling above 1000 m) and/or reduction in dissolved oxygen (>5%). The northernmost regions of the North Atlantic will suffer the greatest impacts. Warmer and more acidic oceans will drastically reduce the suitable habitat for ecosystem-engineers, with severe consequences such as declines in population densities, even compromising their long-term survival, loss of biodiversity and reduced biogeographic distribution that might compromise connectivity at large scales. These effects can be aggravated by reductions in carbon fluxes, particularly in areas where food availability is already limited. Declines in benthic biomass and biodiversity will diminish ecosystem services such as habitat provision, nutrient
To understand the restoration potential of degraded habitats, it is important to know the key processes and habitat features that allow for recovery after disturbance. As part of the EU (Horizon 2020) funded MERCES project, a group of European experts compiled and assessed current knowledge, from both past and ongoing restoration efforts, within the Mediterranean Sea, the Baltic Sea, and the NorthEast Atlantic Ocean. The aim was to provide an expert judgment of how different habitat features could impact restoration success and enhance the recovery of marine habitats. A set of biological and ecological features (i.e., life-history traits, population connectivity, spatial distribution, structural complexity, and the potential for regime shifts) were identified and scored according to their contribution to the successful accomplishment of habitat restoration for five habitats: seagrass meadows, kelp forests, Cystoseira macroalgal beds, coralligenous assemblages and cold-water coral habitats. The expert group concluded that most of the kelp forests features facilitate successful restoration, while the features for the coralligenous assemblages and the cold-water coral habitat did not promote successful restoration. For the other habitats the conclusions were much more variable. The lack of knowledge on the relationship between acting pressures and resulting changes in the ecological state of habitats is a major challenge for implementing restoration actions. This paper provides an overview of essential features that can affect restoration success in marine habitats of key importance for valuable ecosystem services.
Modeling of Deep-Sea Sponge Grounds GAMs, Maxent and RF showed similar performance in terms of evaluation statistics but a different prediction, with RF showing the highest differences. This algorithm only retained depth and maximum currents whereas GAM and Maxent included bathymetric position index, slope, aspect and backscatter. In these latter two models, P. amadou showed a preference for high backscatter values and areas slightly elevated, flat or with gentle slopes and with a NE orientation. The lack of significant differences in model performance permitted to merge all predictions using an ensemble model approach. Our results contribute toward understanding the environmental drivers and biogeography of the species in the Atlantic. Furthermore, we present a case toward designating the Tropic Seamount as an Ecologically or Biologically Significant marine Area (EBSA) as a contribution to address biodiversity conservation in ABNJs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.