In this study, 1429 fishes of 18 different species (12 native and six exotic) were sampled from 29 localities to compare the levels of parasitism between native and exotic fish species and to examine the relationship between environmental degradation and parasite diversity. Forty-four putative species of parasites were found and most of these appear to be native parasites, which have not previously been described. Two parasite species, Lernaea cyprinacea and Ligula intestinalis, are probably introduced. Both were found on or in a range of native fish species, where they may cause severe disease. Levels of parasitism and parasite diversity were significantly greater in native fishes than in exotic species, and this may contribute to an enhanced demographic performance and competitive ability in invading exotics. Levels of parasitism and parasite diversity in native fishes were negatively related to habitat disturbance, in particular to a suite of factors that indicate increased human use of the river and surrounding environment. This was due principally to the absence in more disturbed habitats of a number of species of endoparasites with complex life cycles, involving transmission between different host species.
The United Nation’s 2030 development agenda adopted in 2015 outlines 17 Sustainable Development Goals (SDGs), and the organization has continued to put food security in the center of its vocalization. Aquaculture is currently the fastest-growing food production sector globally and a sustainable option for attaining food security. Food as a basic necessity for man’s survival is always a timely issue. Hence, owing to aquaculture’s unique role, it is expected that the demand for aquatic products (especially seafood) will continue to increase due to geometric population growth. Many seafood products are among the critical protein sources in the world. This is partly because they have micronutrients and essential fatty acids that are not present in land-based protein sources. According to the Food and Agriculture Organization, shellfish is one of the main cultured aquaculture groups in the world. Hence, the development of shellfish aquaculture has an important role in sustainable food supply and food security. In this article, an overview of the current and projected contributions of shellfish aquaculture to global food security is presented. Apparently, shellfish aquaculture in the next few decades will have to be intensified to bridge the gap between demand and supply in a cost-effective manner. Also, food waste would have to be reduced and natural resources should be used more efficiently to minimize the negative impacts on aquaculture on the environment.
Aim:The main objective of this study was to emphasize on histopathological examinations and molecular identification of Streptococcus agalactiae isolated from natural infections in hybrid tilapia (Oreochromis niloticus) in Temerloh Pahang, Malaysia, as well as to determine the susceptibility of the pathogen strains to various currently available antimicrobial agents.Materials and Methods:The diseased fishes were observed for variable clinical signs including fin hemorrhages, alterations in behavior associated with erratic swimming, exophthalmia, and mortality. Tissue samples from the eyes, brain, kidney, liver, and spleen were taken for bacterial isolation. Identification of S. agalactiae was screened by biochemical methods and confirmed by VITEK 2 and 16S rRNA gene sequencing. The antibiogram profiling of the isolate was tested against 18 standard antibiotics included nitrofurantoin, flumequine, florfenicol, amoxylin, doxycycline, oleandomycin, tetracycline, ampicillin, lincomycin, colistin sulfate, oxolinic acid, novobiocin, spiramycin, erythromycin, fosfomycin, neomycin, gentamycin, and polymyxin B. The histopathological analysis of eyes, brain, liver, kidney, and spleen was observed for abnormalities related to S. agalactiae infection.Results:The suspected colonies of S. agalactiae identified by biochemical methods was observed as Gram-positive chained cocci, β-hemolytic, and non-motile. The isolate was confirmed as S. agalactiae by VITEK 2 (99% similarity), reconfirmed by 16S rRNA gene sequencing (99% similarity) and deposited in GenBank with accession no. KT869025. The isolate was observed to be resistance to neomycin and gentamicin. The most consistent gross findings were marked hemorrhages, erosions of caudal fin, and exophthalmos. Microscopic examination confirmed the presence of marked congestion and infiltration of inflammatory cell in the eye, brain, kidney, liver, and spleen. Eye samples showed damage of the lens capsule, hyperemic and hemorrhagic choroid tissue, and retina hyperplasia accompanied with edema. Brain samples showed perivascular and pericellular edema and hemorrhages of the meninges. Kidney samples showed hemorrhage and thrombosis in the glomeruli and tubules along with atrophy in hematopoietic tissue. Liver samples showed congestion of the sinusoids and blood vessel, thrombosis of portal blood vessel, and vacuolar (fatty) degeneration of hepatocytes. Spleen samples showed large thrombus in the splenic blood vessel, multifocal hemosiderin deposition, congestion of blood vessels, and multifocal infiltration of macrophages.Conclusion:Therefore, it can be concluded that pathological changes in tissues and organs of fish occur proportionally to the pathogen invasion, and because of their high resistance, neomycin and gentamicin utilization in the prophylaxis or treatment of S. agalactiae infection should be avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.