We present a system for online monitoring of maritime activity over streaming positions from numerous vessels sailing at sea. It employs an online tracking module for detecting important changes in the evolving trajectory of each vessel across time, and thus can incrementally retain concise, yet reliable summaries of its recent movement. In addition, thanks to its complex event recognition module, this system can also offer instant notification to marine authorities regarding emergency situations, such as risk of collisions, suspicious moves in protected zones, or package picking at open sea. Not only did our extensive tests validate the performance, efficiency, and robustness of the system against scalable volumes of real-world and synthetically enlarged datasets, but its deployment against online feeds from vessels has also confirmed its capabilities for effective, real-time maritime surveillance.
Cluster analysis over Moving Object Databases (MODs) is a challenging research topic that has attracted the attention of the mobility data mining community. In this paper, we study the temporal-constrained sub-trajectory cluster analysis problem, where the aim is to discover clusters of sub-trajectories given an ad-hoc, user-specified temporal constraint within the dataset's lifetime. The problem is challenging because: (a) the time window is not known in advance, instead it is specified at query time, and (b) the MOD is continuously updated with new trajectories. Existing solutions first filter the trajectory database according to the temporal constraint, and then apply a clustering algorithm from scratch on the filtered data. However, this approach is extremely inefficient, when considering explorative data analysis where multiple clustering tasks need to be performed over different temporal subsets of the database, while the database is updated with new trajectories. To address this problem, we propose an incremental and scalable solution to the problem, which is built upon a novel indexing structure, called Representative Trajectory Tree (ReTraTree). ReTraTree acts as an effective spatiotemporal partitioning technique; partitions in ReTraTree correspond to groupings of sub-trajectories, which are incrementally maintained and assigned to representative (sub-)trajectories. Due to the proposed organization of sub-trajectories, the problem under study can be efficiently solved as simply as executing a query operator on ReTraTree, while insertion of new trajectories is supported. Our extensive experimental study performed on real and synthetic datasets shows that our approach outperforms a state-of-the-art in-DBMS solution supported by PostgreSQL by orders of magnitude.
In this work we propose a novel spatial knowledge discovery pipeline capable of automatically unravelling the ''roads of the sea'' and maritime traffic patterns by analysing voluminous vessel tracking data, as collected through the Automatic Identification System (AIS). We present a computationally efficient and highly accurate solution, based on a MapReduce approach and unsupervised learning methods, capable of identifying the spatiotemporal dynamics of ship routes and most crucially their characteristics, thus deriving maritime ''patterns of life'' at a global scale, without the reliance on any additional information sources or a priori expert knowledge. Experimental results confirm high accuracy of results and superior performance in comparison to other methods, with the entire processing duration completing in less than 3 hours for more than a terabyte of non-uniform spatial data. Finally, to clearly demonstrate the applicability and impact of our proposed method, we evaluate its ability to detect real world ''anomalies'', such as maritime incidents reported in the European Marine Casualty Information Platform. Numerical results show the advantages of our scheme in terms of accuracy, with an achieved anomaly detection accuracy of higher than 93%, by detecting 313 out of 335 relevant maritime incidents. INDEX TERMS AIS, anomaly detection, data driven maritime traffic, patterns of life, routes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.