Colorectal cancer is one of the most common and most diagnosed cancers in the world. There are many predisposing factors, for example, genetic predisposition, smoking, or a diet rich in red, processed meat and poor in vegetables and fruits. Probiotics may be helpful in the prevention of cancer and may provide support during treatment. The main aim of this study is to characterize the potential mechanisms of action of probiotics, in particular the prevention and treatment of colorectal cancer. Probiotics’ potential mechanisms of action are, for example, modification of intestinal microbiota, improvement of colonic physicochemical conditions, production of anticancerogenic and antioxidant metabolites against carcinogenesis, a decrease in intestinal inflammation, and the production of harmful enzymes. The prevention of colorectal cancer is associated with favorable quantitative and qualitative changes in the intestinal microbiota, as well as changes in metabolic activity and in the physicochemical conditions of the intestine. In addition, it is worth noting that the effect depends on the bacterial strain, as well as on the dose administered.
The cornelian cherry Cornus mas L. belongs to the Cornaceae family (Cornaceae). It can be found naturally in the central and southeastern regions of Europe. Its fruits are characterized by oval or oval-oblong shape, with colours ranging from light yellow to dark cherry. The taste of fruits is usually considered to be tartsweet, sour and in some cases sweet-pineapple. All cultivars of the cornelian cherry have a high biological value, which is mainly connected with their antioxidant activity, as well as with their phenolic compound and ascorbic acid content. The main pro-health properties of the cornelian cherry are related to the large amount of anthocyanins. The basic raw material is fruits; however, leaves, flowers and seeds are also used as a source of active ingredients. The chemical composition of cornelian cherry fruits is diversified and depends to a large extent on the cultivar, as well as on cultivation, and the environmental and climatic conditions.
The aim of the study was to evaluate the effect of the addition of Fagopyrum esculentum Moench buckwheat sprouts modified with the addition of Saccharomyces cerevisiae var. boulardii to an atherogenic diet on the metabolism of sterols and fatty acids in rats. It was noticed in the study that the group fed with modified sprouts (HFDPRS) had a greater amount of sterols by 75.2%, compared to the group fed on an atherogenic diet (HFD). The content of cholesterol in the liver and feces was lower in the HFDPRS group than the HFD group. In the serum of the HFDPRS group, a more significant amount of the following acids was observed: C18:2 (increase by 13.5%), C20:4 (increase by 15.1%), and C22:6 (increase by 13.1%), compared to the HFDCS group. Regarding the biochemical parameters, it was noted that the group fed the diet with the addition of probiotic-rich sprouts diet had lower non-HDL, LDL-C and CRP ratios compared to the group fed the high-fat diet. The obtained results indicate that adding modified buckwheat sprouts to the diet by adding the probiotic strain of the yeast may have a significant impact on the metabolism of the indicated components in the organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.