Background Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease may lead to interventions that impact the epidemic. Methods Healthy, M. tuberculosis infected South African adolescents were followed for 2 years; blood was collected every 6 months. A prospective signature of risk was derived from whole blood RNA-Sequencing data by comparing participants who ultimately developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex qRT-PCR, the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. The latter participants were household contacts of adults with active pulmonary tuberculosis disease. Findings Of 6,363 adolescents screened, 46 progressors and 107 matched controls were identified. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% confidence interval, 63·2–68·9) and a specificity of 80·6% (79·2–82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA-Seq and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6–64·3) and a specificity of 82·8% (76·7–86) in 12 months preceding tuberculosis. Interpretation The whole blood tuberculosis risk signature prospectively identified persons at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease. Funding Bill and Melinda Gates Foundation, the National Institutes of Health, Aeras, the European Union and the South African Medical Research Council (detail at end of text).
Rationale: Contacts of patients with tuberculosis (TB) constitute an important target population for preventive measures because they are at high risk of infection with Mycobacterium tuberculosis and progression to disease.Objectives: We investigated biosignatures with predictive ability for incident TB.Methods: In a case-control study nested within the Grand Challenges 6-74 longitudinal HIV-negative African cohort of exposed household contacts, we employed RNA sequencing, PCR, and the pair ratio algorithm in a training/test set approach. Overall, 79 progressors who developed TB between 3 and 24 months after diagnosis of index case and 328 matched nonprogressors who remained healthy during 24 months of follow-up were investigated. Measurements and Main Results:A four-transcript signature derived from samples in a South African and Gambian training set predicted progression up to two years before onset of disease in blinded test set samples from South Africa, the Gambia, and Ethiopia with little population-associated variability, and it was also validated in an external cohort of South African adolescents with latent M. tuberculosis infection. By contrast, published diagnostic or prognostic TB signatures were predicted in samples from some but not all three countries, indicating site-specific variability. Post hoc meta-analysis identified a single gene pair, C1QC/TRAV27 (complement C1q C-chain / T-cell receptor-a variable gene 27) that would consistently predict TB progression in household contacts from multiple African sites but not in infected adolescents without known recent exposure events.Conclusions: Collectively, we developed a simple whole blood-based PCR test to predict TB in recently exposed household contacts from diverse African populations. This test has potential for implementation in national TB contact investigation programs.
The immaturity of the immune system increases the susceptibility of young infants to infectious diseases and prevents the induction of protective immune responses by vaccines. We previously reported that Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination induces a potent Th1 response to mycobacterial Ags in newborns. In this study, we evaluated the influence of BCG on the response to unrelated vaccines given in early life. Newborns were randomly allocated to one of three study groups receiving BCG at birth, when infants received their first dose of hepatitis B and oral polio vaccines; at 2 mo of age, when infants received their first dose of diphtheria and tetanus vaccines; or at 4.5 mo of age, when immune responses to vaccines were measured. Administration of BCG at the time of priming markedly increased the cellular and Ab responses to the hepatitis B vaccine, but had only a limited influence on the cytokine response to tetanus toxoid and no effect on the Ab responses to tetanus and diphtheria toxoids. Although BCG induced a potent Th1-type response to mycobacterial Ags, it promoted the production of both Th1- and Th2-type cytokines in response to unrelated vaccines. The effect of BCG was apparent at the systemic level, as it increased the Ab response to oral polio vaccine. These results demonstrate that BCG influences the immune response to unrelated Ags in early life, likely through its influence on the maturation of dendritic cells.
Tuberculosis (TB) remains a global health problem. The solution involves development of an effective vaccine, but has been limited by incomplete understanding of what constitutes protective immunity during natural infection with Mycobacterium tuberculosis. In this study, M. tuberculosis-specific responses following an overnight whole-blood assay were assessed by intracellular cytokine staining and luminex, and compared between TB cases and exposed household contacts. TB cases had significantly higher levels of IFN-cT cells compared with contacts. TB cases also had a significantly higher proportion of cells single-positive for TNF-a, but lower proportion of cells producing IL-2 alone and these differences were seen for both CD4 1 and CD8 1 T cells. Cytokine profiles from culture supernatants were significantly biased toward a Th1 phenotype (IFN-c and IL-12(p40)) together with a complete abrogation of IL-17 secretion in TB cases. Our data indicate that despite a robust response to TB antigens in active TB disease, changes in the pattern of cytokine production between TB infection and disease clearly contribute to disease progression.
Tuberculosis remains a major health threat and its control depends on improved measures of prevention, diagnosis and treatment. Biosignatures can play a significant role in the development of novel intervention measures against TB and blood transcriptional profiling is increasingly exploited for their rational design. Such profiles also reveal fundamental biological mechanisms associated with the pathology of the disease. We have compared whole blood gene expression in TB patients, as well as in healthy infected and uninfected individuals in a cohort in The Gambia, West Africa and validated previously identified signatures showing high similarities of expression profiles among different cohorts. In this study, we applied a unique combination of classical gene expression analysis with pathway and functional association analysis integrated with intra-individual expression correlations. These analyses were employed for identification of new disease-associated gene signatures, identifying a network of Fc gamma receptor 1 signaling with correlating transcriptional activity as hallmark of gene expression in TB. Remarkable similarities to characteristic signatures in the autoimmune disease systemic lupus erythematosus (SLE) were observed. Functional gene clusters of immunoregulatory interactions involving the JAK-STAT pathway; sensing of microbial patterns by Toll-like receptors and IFN-signaling provide detailed insights into the dysregulation of critical immune processes in TB, involving active expression of both pro-inflammatory and immunoregulatory systems. We conclude that transcriptomics (i) provides a robust system for identification and validation of biosignatures for TB and (ii) application of integrated analysis tools yields novel insights into functional networks underlying TB pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.