Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm−1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3, are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.
Doped organic semiconductors are critical to emerging device applications, including thermoelectrics, bioelectronics, and neuromorphic computing devices. It is commonly assumed that low conductivities in these materials result primarily from charge trapping by the Coulomb potentials of the dopant counterions. Here, we present a combined experimental and theoretical study rebutting this belief. Using a newly developed doping technique based on ion exchange, we prepare highly doped films with several counterions of varying size and shape and characterize their carrier density, electrical conductivity, and paracrystalline disorder. In this uniquely large data set composed of several classes of high-mobility conjugated polymers, each doped with at least five different ions, we find electrical conductivity to be strongly correlated with paracrystalline disorder but poorly correlated with ionic size, suggesting that Coulomb traps do not limit transport. A general model for interacting electrons in highly doped polymers is proposed and carefully parametrized against atomistic calculations, enabling the calculation of electrical conductivity within the framework of transient localization theory. Theoretical calculations are in excellent agreement with experimental data, providing insights into the disorder-limited nature of charge transport and suggesting new strategies to further improve conductivities.
Precise control of the microstructure in organic semiconductors (OSCs) is essential for developing high‐performance organic electronic devices. Here, a comprehensive charge transport characterization of two recently reported rigid‐rod conjugated polymers that do not contain single bonds in the main chain is reported. It is demonstrated that the molecular design of the polymer makes it possible to achieve an extended linear backbone structure, which can be directly visualized by high‐resolution scanning tunneling microscopy (STM). The rigid structure of the polymers allows the formation of thin films with uniaxially aligned polymer chains by using a simple one‐step solution‐shear/bar coating technique. These aligned films show a high optical anisotropy with a dichroic ratio of up to a factor of 6. Transport measurements performed using top‐gate bottom‐contact field‐effect transistors exhibit a high saturation electron mobility of 0.2 cm2 V−1 s−1 along the alignment direction, which is more than six times higher than the value reported in the previous work. This work demonstrates that this new class of polymers is able to achieve mobility values comparable to state‐of‐the‐art n‐type polymers and identifies an effective processing strategy for this class of rigid‐rod polymer system to optimize their charge transport properties.
Understanding the charge transport mechanisms in chirality-selected single-walled carbon nanotube (SWCNT) networks and the influence of network parameters is essential for further advances of their optoelectronic and thermoelectric applications. Here, we report on charge density and temperature-dependent field-effect mobility and on-chip field-effect-modulated Seebeck coefficient measurements of polymer-sorted monochiral small-diameter (6,5) (0.76 nm) and mixed large-diameter SWCNT (1.17–1.55 nm) networks (plasma torch nanotubes, RN) with different network densities and length distributions. All untreated networks display balanced ambipolar transport and electron–hole symmetric Seebeck coefficients. We show that charge and thermoelectric transport in SWCNT networks can be modeled by the Boltzmann transport formalism, incorporating transport in heterogeneous media and fluctuation-induced tunneling. Considering the diameter-dependent one-dimensional density of states (DoS) of the SWCNTs composing the network, we can simulate the charge density and temperature-dependent Seebeck coefficients. Our simulations suggest that scattering in these networks cannot be described as simple one-dimensional acoustic and optical phonon scattering as for single SWCNTs. Instead the relaxation time is inversely proportional to energy (τ ∝ (E – E C) s , s = −1, E C being the energy of the first van Hove singularity), presumably pointing toward the more two-dimensional character of scattering events and the necessity to include scattering at the SWCNT junctions. Finally, our observation of higher power factors in trap-free, 1,2,4,5-tetrakis(tetramethylguanidino)benzene-treated (6,5) networks than in the RN networks emphasizes the importance of chirality selection to tune the width of the DoS. To benefit from both higher intrinsic mobilities and a large thermally accessible DoS, we propose trap-free, narrow DoS distribution, large-diameter SWCNT networks for both electronic and thermoelectric applications.
The development of semicrystalline polymer semiconductors with field-effect mobilities comparable to or even exceeding those of amorphous silicon has exposed limitations of describing charge transport in these materials with disorder-based models developed originally for more disordered, lower mobility polymers. Here, we show that the charge carrier density and temperature dependence of the field-effect electron mobility and Seebeck coefficient in the semicrystalline polymer P(NDI2OD-T2) with varying degrees of crystallinity are incompatible with a description of charge transport being limited by energetic disorder effects. We provide instead direct evidence of low disorder, narrow band conduction. A spatially inhomogeneous density of states and the inclusion of short range electron–electron interactions allow to consistently explain both the measured mobility and Seebeck coefficient. These results provide a rationale for improving thermoelectric efficiency of polymer semiconductors via increasing the extension of the crystalline domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.